Though many studies examined the properties of the class of IIIA-VIA and IVA-VIA layered materials, few have delved into the electrochemical aspect of such materials. In light of the burgeoning interest in layered structures towards various electrocatalytic applications, we endeavored to study the inherent electrochemical properties of representative layered materials of this class, GaSe and GeS, and their impact towards electrochemical sensing of redox probes as well as catalysis of oxygen reduction, oxygen evolution and hydrogen evolution reactions. In contrast to the typical sandwich structure of MoS2 layered materials, GeS is isoelectronic to black phosphorus with the same structure; GaSe is a layered material consisting of GaSe sheets bonded in the sequence Se-Ga-Ga-Se. We characterized GaSe and GeS by employing scanning electron microscopy, X-ray diffraction, Raman spectroscopy and X-ray photoelectron spectroscopy complemented by electronic structure calculations. It was found that the encompassing surface oxide layers on GaSe and GeS greatly influenced their electrochemical properties, especially their electrocatalytic capabilities towards hydrogen evolution reaction. These findings provide fresh insight into the electrochemical properties of these IIIA-VIA and IVA-VIA layered structures which enables development for future applications.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1039/c5cp06682d | DOI Listing |
Sci Rep
November 2023
Lukasiewicz Research Network, PORT Polish Center for Technology Development, Stablowicka 147, 54-066, Wroclaw, Poland.
Monochalcogenides of groups III (GaS, GaSe) and VI (GeS, GeSe, SnS, and SnSe) are materials with interesting thickness-dependent characteristics, which have been applied in many areas. However, the stability of layered monochalcogenides (LMs) is a real problem in semiconductor devices that contain these materials. Therefore, it is an important issue that needs to be explored.
View Article and Find Full Text PDFSci Rep
November 2017
Department of Experimental Physics, Faculty of Fundamental Problems of Technology, Wroclaw University of Science and Technology, Wybrzeże Wyspiańskiego 27, 50-370, Wrocław, Poland.
Photoacoustic (PA) and modulated reflectance (MR) spectroscopy have been applied to study the indirect and direct band gap for van der Waals (vdW) crystals: dichalcogenides (MoS, MoSe, MoTe, HfS, HfSe, WS, WSe, ReS, ReSe, SnS and SnSe) and monochalcogenides (GaS, GaSe, InSe, GeS, and GeSe). It is shown that the indirect band gap can be determined by PA technique while the direct band gap can be probed by MR spectroscopy which is not sensitive to indirect optical transitions. By measuring PA and MR spectra for a given compound and comparing them with each other it is easy to conclude about the band gap character in the investigated compound and the energy difference between indirect and direct band gap.
View Article and Find Full Text PDFPhys Chem Chem Phys
January 2016
School of Physical and Mathematical Science, Division of Chemistry and Biological Chemistry, Nanyang Technological University, 21 Nanyang Link, Singapore 637371.
Though many studies examined the properties of the class of IIIA-VIA and IVA-VIA layered materials, few have delved into the electrochemical aspect of such materials. In light of the burgeoning interest in layered structures towards various electrocatalytic applications, we endeavored to study the inherent electrochemical properties of representative layered materials of this class, GaSe and GeS, and their impact towards electrochemical sensing of redox probes as well as catalysis of oxygen reduction, oxygen evolution and hydrogen evolution reactions. In contrast to the typical sandwich structure of MoS2 layered materials, GeS is isoelectronic to black phosphorus with the same structure; GaSe is a layered material consisting of GaSe sheets bonded in the sequence Se-Ga-Ga-Se.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!