Antisenescence effect of mouse embryonic stem cell conditioned medium through a PDGF/FGF pathway.

FASEB J

*Department of Biochemistry and Molecular Biology, Smart-Aging Convergence Research Center, and Department of Pathology, College of Medicine, Yeungnam University, Daegu, Republic of Korea; Lunenfeld-Tanenbaum Research Institute, Mount Sinai Hospital, Toronto, Ontario, Canada; and Physiology and Experimental Medicine Program, Hospital for Sick Children Research Institute, Toronto, Ontario, Canada

Published: March 2016

Cellular senescence, an irreversible state of growth arrest, underlies organismal aging and age-related diseases. Recent evidence suggests that aging intervention based on inhibition of cellular senescence might be a promising strategy for treatment of aging and age-related diseases. Embryonic stem cells (ESCs) and ESC conditioned medium (CM) have been suggested as a desirable source for regenerative medicine. However, effects of ESC-CM on cellular senescence remain to be determined. We found that treatment of senescent human dermal fibroblasts with CM from mouse ESCs (mESCs) decreases senescence phenotypes. We found that platelet-derived growth factor BB in mESC-CM plays a critical role in antisenescence effect of mESC-CM through up-regulation of fibroblast growth factor 2. We confirmed that mESC-CM treatment accelerates the wound-healing process by down-regulating senescence-associated p53 expression in in vivo models. Taken together, our results suggest that mESC-CM has the ability to suppress cellular senescence and maintain proliferative capacity. Therefore, this strategy might emerge as a novel therapeutic strategy for aging and age-related diseases.

Download full-text PDF

Source
http://dx.doi.org/10.1096/fj.15-278846DOI Listing

Publication Analysis

Top Keywords

cellular senescence
16
aging age-related
12
age-related diseases
12
embryonic stem
8
conditioned medium
8
growth factor
8
senescence
5
antisenescence mouse
4
mouse embryonic
4
stem cell
4

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!