Backgrounds: Glycero-lysophospholipids (glycero-LPLs), which are known to exert potent biological activities, have been demonstrated to be secreted from activated platelets in vitro; however, their association with platelet activation in vivo has not been yet elucidated. In this study, we investigated the correlations between the blood levels of each glycero-LPL and serotonin, a biomarker of platelet activation, in human subjects to elucidate the involvement of platelet activation in glycero-LPLs in vivo.
Methods And Results: We measured the plasma serotonin levels in 141 consecutive patients undergoing coronary angiography (acute coronary syndrome, n = 38; stable angina pectoris, n = 71; angiographically normal coronary arteries, n = 32) and investigated the correlations between the plasma levels of serotonin and glycero-LPLs. The results revealed the existence of a specific and significant association between the plasma serotonin and plasma lysophosphatidylserine (LysoPS) levels. On the contrary, regular aspirin intake failed to affect the plasma LysoPS levels despite the fact that the plasma lysophosphatidic acid, lysophosphatidylethanolamine, lysophosphatidylglycerol, and lysophosphatidylinositol levels were lower in those who had taken aspirin regularly.
Conclusion: We found a specific positive correlation between the blood levels of serotonin and LysoPS, a new lipid mediator. Thus, LysoPS might be specifically involved in strong platelet activation, which is associated with the release of serotonin.
General Significance: Our present results suggest the possible involvement of LysoPS in the pathogenesis of atherosclerotic diseases.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC4661731 | PMC |
http://dx.doi.org/10.1016/j.bbacli.2015.08.003 | DOI Listing |
Thromb Haemost
January 2025
Hemostasis and Erythropathology Laboratory, Hematopathology, Pathology Department, Centre de Diagnòstic Biomèdic (CDB), Hospital Clínic de Barcelona, Institut d'Investigacions Biomèdiques August Pi i Sunyer (IDIBAPS), University of Barcelona, Barcelona, Spain.
Background: V617F-mutated myeloproliferative neoplasms (MPN) exhibit abnormal proliferation of bone marrow progenitors and increased risk of thrombosis, specifically in splanchnic veins (SVT). The contribution of the endothelium to the development of the prothrombotic phenotype was explored.
Material And Methods: Plasma and serum samples from V617F MPN patients with (n=26) or without (n=7) thrombotic debut and different treatments, were obtained (n=33).
J Tradit Complement Med
January 2025
National Research Institute of Chinese Medicine, Ministry of Health and Welfare, Taipei City, 112026, Taiwan.
Amidst growing concerns over COVID-19 aftereffects like fatigue and cognitive issues, NRICM101, a traditional Chinese medicine, has shown promise. Used by over 2 million people globally, it notably reduces hospitalizations and intubations in COVID-19 patients. To explore whether NRICM101 could combat COVID-19 brain fog, we tested NRICM101 on hACE2 transgenic mice administered the S1 protein of SARS-CoV-2, aiming to mitigate S1-induced cognitive issues by measuring animal behaviors, immunohistochemistry (IHC) staining, and next-generation sequencing (NGS) analysis.
View Article and Find Full Text PDFBMC Immunol
January 2025
Division of Pulmonary and Critical Care Medicine, Department of Internal Medicine, Chungnam National University School of Medicine, Chungnam National University Hospital, 282 Munhwa-Ro, Jung-Gu, Daejeon, 35015, Republic of Korea.
Background: Interleukin-6 (IL-6) plays a central role in sepsis-induced cytokine storm involving immune hyperactivation and early neutrophil activation. Programmed death protein-1 (PD-1) is associated with sepsis-induced immunosuppression and lymphocyte apoptosis. However, the effects of simultaneous blockade of IL-6 and PD-1 in a murine sepsis model are not well understood.
View Article and Find Full Text PDFMethods Mol Biol
January 2025
Division of Hemostasis and Thrombosis, Department of Medicine, BIDMC, Harvard Medical School, Boston, MA, USA.
The actin cytoskeleton serves an important, but poorly characterized, role in controlling granule exocytosis. The dynamic nature of actin remodeling allows it to act both as a barrier to prevent indiscriminate granule release and as a facilitator of membrane fusion. In its capacity to promote exocytosis, filamentous actin binds to components of the exocytotic machinery through actin binding proteins, but also through direct interactions with SNAREs.
View Article and Find Full Text PDFNat Commun
January 2025
Division of Virology, Institute of Medical Science, University of Tokyo, Tokyo, Japan.
Microthrombus formation is associated with COVID-19 severity; however, the detailed mechanism remains unclear. In this study, we investigated mouse models with severe pneumonia caused by SARS-CoV-2 infection by using our in vivo two-photon imaging system. In the lungs of SARS-CoV-2-infected mice, increased expression of adhesion molecules in intravascular neutrophils prolonged adhesion time to the vessel wall, resulting in platelet aggregation and impaired lung perfusion.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!