The discrepancy between ryanodine binding and its effects on the calcium releasing system of the sarcoplasmic reticulum.

Biomed Biochim Acta

Max-Planck-Institut für Medizinische Forschung, Abteilung für Physiologie, Heidelberg, Bundesrepublik Deutschland.

Published: September 1989

Heavy sarcoplasmic reticulum vesicles isolated from rabbit skeletal muscle were reacted in high ionic strength solutions with ryanodine. The effect of this reaction on ATP - and dinitrophenyl phosphate supported calcium uptake and caffeine induced calcium release were studied. At pH 7.0 calcium uptake and caffeine induced calcium release are simultaneous affected by the occupation of 0.5 pmol ryanodine binding sites/mg protein, having an affinity of 0.33 nM-1.

Download full-text PDF

Source

Publication Analysis

Top Keywords

ryanodine binding
8
sarcoplasmic reticulum
8
calcium uptake
8
uptake caffeine
8
caffeine induced
8
induced calcium
8
calcium release
8
calcium
5
discrepancy ryanodine
4
binding effects
4

Similar Publications

The genetic architecture of resistance to flubendiamide insecticide in Helicoverpa armigera (Hübner).

PLoS One

January 2025

Department of Entomology and Acarology, Luiz de Queiroz College of Agriculture (ESALQ), University of São Paulo (USP), Piracicaba, São Paulo, Brazil.

Insecticide resistance is a major problem in food production, environmental sustainability, and human health. The cotton bollworm Helicoverpa armigera is a globally distributed crop pest affecting over 300 crop species. H.

View Article and Find Full Text PDF

Over the past years, global pesticide use has increased by 20%. New insecticidal molecules, like cyantraniliprole, aim to reduce side effects due to the high toxicity of pesticides and their harmful effects on health and the environment. Its mechanism involves binding to ryanodine receptors, causing rapid calcium ion release.

View Article and Find Full Text PDF

Over 200 point mutations in the ryanodine receptor (RyR2) of the cardiac sarcoplasmic reticulum (SR) are known to be associated with cardiac arrhythmia. We have already reported on the calcium signaling phenotype of a point mutation in RyR2 Ca binding site Q3925E expressed in human stem-cell-derived cardiomyocytes (hiPSC-CMs) that was found to be lethal in a 9-year-old girl. CRISPR/Cas9-gene-edited mutant cardiomyocytes carrying the RyR2-Q3925E mutation exhibited a loss of calcium-induced calcium release (CICR) and caffeine-triggered calcium release but continued to beat arrhythmically without generating significant SR Ca release, consistent with a remodeling of the calcium signaling pathway.

View Article and Find Full Text PDF

Uncovering potential causal genes for undiagnosed congenital anomalies using an in-house pipeline for trio-based whole-genome sequencing.

Hum Genomics

January 2025

Division of Genome Science, Department of Precision Medicine, Korea National Institute of Health, Korea Disease Control and Prevention Agency, Cheongju, Chungbuk, 28159, Republic of Korea.

Background: Congenital anomalies (CAs) encompass a wide spectrum of structural and functional abnormalities during fetal development, commonly presenting at birth. Identifying the cause of CA is essential for accurate diagnosis and treatment. Using a target-gene approach, genetic variants could be found in certain CA patients.

View Article and Find Full Text PDF

Mutations in the skeletal isoform of the ryanodine receptor 1 (RyR1) pose grave risks during anesthesia or treatment with succinylcholine muscle relaxants. These can trigger a potentially lethal malignant hyperthermia (MH) episode via intracellular calcium increase mainly from RyR1 channel leakage. Dantrolene is the only known treatment option to prevent death.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!