Humans can be exposed to arsenic (As) through air, drinking water, and food. The aim of this study was to calculate the hazard quotient (HQ) of As, based on its concentration in drinking water and the scalp hair of children (males) belonging to two age groups (5-10 and 11-14 years) who consumed water contaminated with different concentrations of As. The water samples were collected from As-exposed and nonexposed areas, which were classified as low-exposed (LE), high-exposed (HE), and nonexposed (NE) areas. The total concentration of inorganic As (iAs) and its species (As(III) and As(V)) in water samples of all selected areas was determined by advanced extraction methods. For purposes of comparison, the total As level was also determined in all water samples. The resulting data indicated that the predominant inorganic As species in groundwater samples was arsenate (As(V)). The As concentrations in drinking water of LE and HE areas were found to be 2.6-230-fold higher than the permissible limit for drinking water established by the World Health Organization (2004). However, the As levels in drinking water of the NE area was within the permissible limit (<10 μg/L). The As levels in the scalp hair samples from boys of NE, LE, and HE areas ranged from 0.16 to 0.36, 0.36 to 0.83, and 11.5 to 31.9 mg/kg, respectively. A significant, positive correlation was observed between the As levels in drinking water and scalp hair samples of children from the HE area, compared with the other two groups (p>0.01). The As toxicity risk assessment based on HQ for the NE, LE, and HE areas corresponded to <10, ≥ 10, and >10, respectively. These HQ values indicated the noncarcinogenic, less carcinogenic, and highly carcinogenic exposure risks faced by children from the NE, LE, and HE areas, respectively. It can be concluded that children consuming the groundwater of the LE (Khairpur Mir's) and HE (Tharparkar) areas of Pakistan are at a potential risk of chronic As toxicity.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.scitotenv.2015.11.152DOI Listing

Publication Analysis

Top Keywords

drinking water
24
water samples
12
water
10
nonexposed areas
8
permissible limit
8
areas
7
drinking
6
exposure children
4
children arsenic
4
arsenic drinking
4

Similar Publications

Solar-Driven Nanofluidic Ion Regulation for Fractional Salt Crystallization and Reutilization.

ACS Nano

January 2025

Key Laboratory of Drinking Water Science and Technology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China.

Solar water evaporation (SWE) has emerged as an appealing method for water and salt recovery from hypersaline wastewater. However, different ions usually transfer and accumulate uncontrollably during ion-water separation, making salt fractionalization impractical for conventional SWE, and the resulting mixed salts are hard to use and still require significant costs for disposal. To achieve salt fractionalization and reutilization, achieving ion-water and ion-ion separation simultaneously are crucial in advancing SWE toward sustainability.

View Article and Find Full Text PDF

High organofluorine concentrations in municipal wastewater affect downstream drinking water supplies for millions of Americans.

Proc Natl Acad Sci U S A

January 2025

Environmental Science & Engineering, Harvard John A. Paulson School of Engineering and Applied Sciences, Harvard University, Boston, MA 02134.

Wastewater receives per- and polyfluoroalkyl substances (PFAS) from diverse consumer and industrial sources, and discharges are known to be a concern for drinking water quality. The PFAS family includes thousands of potential chemical structures containing organofluorine moieties. Exposures to a few well-studied PFAS, mainly perfluoroalkyl acids (PFAA), have been associated with increased risk of many adverse health outcomes, prompting federal drinking water regulations for six compounds in 2024.

View Article and Find Full Text PDF

In this study, residue depletion and withdrawal time estimation of tilmicosin were examined in Taihe black-bone silky fowls (TBSFs) after oral administration for three consecutive days at a dose of 75 mg/L in water. The tilmicosin concentrations in liver, kidney, muscle, and skin/fat of TBSFs collected from different time points (0.16, 1, 3, 5, 7, 9, 12, 20, 30, 40 days after last administration) were determined by UPLC-MS/MS.

View Article and Find Full Text PDF

Fluoride Exposure and Children's IQ Scores: A Systematic Review and Meta-Analysis.

JAMA Pediatr

January 2025

Division of Translational Toxicology, National Institute of Environmental Health Sciences, National Institutes of Health, Research Triangle Park, North Carolina.

Importance: Previous meta-analyses suggest that fluoride exposure is adversely associated with children's IQ scores. An individual's total fluoride exposure comes primarily from fluoride in drinking water, food, and beverages.

Objective: To perform a systematic review and meta-analysis of epidemiological studies investigating children's IQ scores and prenatal or postnatal fluoride exposure.

View Article and Find Full Text PDF

Regulated disinfection byproducts (e.g., trihalomethanes and haloacetic acids) in drinking water networks fluctuate spatially and temporally, depending on water sources and treatment practices with higher concentrations during the summer.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!