Cellular uptake of poly(allylamine hydrochloride) microcapsules with different deformability and its influence on cell functions.

J Colloid Interface Sci

MOE Key Laboratory of Macromolecular Synthesis and Functionalization, Department of Polymer Science and Engineering, Zhejiang University, Hangzhou 310027, China. Electronic address:

Published: March 2016

It is important to understand the safety issue and cell interaction pattern of polyelectrolyte microcapsules with different deformability before their use in biomedical applications. In this study, SiO2, poly(sodium-p-styrenesulfonate) (PSS) doped CaCO3 and porous CaCO3 spheres, all about 4μm in diameter, were used as templates to prepare microcapsules with different inner structure and subsequent deformability. As a result, three kinds of covalently assembled poly(allylaminehydrochloride)/glutaraldehyde (PAH/GA) microcapsules with similar size but different deformability under external osmotic pressure were prepared. The impact of different microcapsules on cell viability and functions are studied using smooth muscle cells (SMCs), endothelial cells (ECs) and HepG2 cells. The results demonstrated that viabilities of SMCs, ECs and HepG2 cells were not significantly influenced by either of the three kinds of microcapsules. However, the adhesion ability of SMCs and ECs as well as the mobility of SMCs, ECs and HepG2 cells were significantly impaired after treatment with microcapsules in a deformability dependent manner, especially the microcapsules with lower deformability caused higher impairment on cell functions. The cellular uptake kinetics, uptake pathways, intracellular distribution of microcapsules are further investigated in SMCs to reveal the potential mechanism. The SMCs showed faster uptake rate and exocytosis rate of microcapsules with lower deformability (Cap@CaCO3/PSS and Cap@CaCO3), leading to higher intracellular accumulation of microcapsules with lower deformability and possibly larger retardation of cell functions. The results pointed out that the deformability of microcapsules is an important factor governing the biological performance of microcapsules, which requires careful adjustment for further biomedical applications.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.jcis.2015.11.065DOI Listing

Publication Analysis

Top Keywords

microcapsules
13
microcapsules deformability
12
cell functions
12
ecs hepg2
12
hepg2 cells
12
smcs ecs
12
microcapsules lower
12
lower deformability
12
deformability
9
cellular uptake
8

Similar Publications

Adding plant extracts to sausage and other meat products is very important to improve their quality, safety, and durability. The aim of this study was to evaluate the microbiological properties of beef sausage enriched with roselle ( L.) sepal extract.

View Article and Find Full Text PDF

Direct measurement of surface interactions experienced by sticky microcapsules made from environmentally benign materials.

J Colloid Interface Sci

December 2024

Department of Chemical and Biomolecular Engineering, Case School of Engineering, Case Western Reserve University, Cleveland, OH 44106, United States.

We present a study combining experimental measurements, theoretical analysis, and simulations to investigate core-shell microcapsules interacting with a solid boundary, with a particular focus on understanding the short-range potential energy well arising from the tethered force. The microcapsules, fabricated using a Pickering emulsion template with a cinnamon oil core and calcium alginate shell, were characterized for size (∼5-6μm in diameter) and surface charge (∼-20mV). We employed total internal reflection microscopy and particle tracking to measure the microcapsule-boundary interactions and diffusion, from which potential energy and diffusivity profiles were derived.

View Article and Find Full Text PDF

Introduction: Since the population of Europe is rapidly aging, the number of cases of neurodegenerative diseases sharply increases. One of the most significant limitations of current neurodegenerative disease treatment is the inefficient delivery of neuroprotective drugs to the affected part of the brain. One of the promising methods to improve the pharmacokinetic and pharmacodynamic properties of antioxidants is their encapsulation in nanocarriers.

View Article and Find Full Text PDF

The interception of blood-borne bacteria in the liver defines the outcomes of invasive bacterial infections, but the mechanisms of this antibacterial immunity are not fully understood. This study shows that natural antibodies (nAbs) to capsules enable liver macrophage Kupffer cells (KCs) to rapidly capture and kill blood-borne encapsulated bacteria in mice. Affinity pulldown with serotype-10A capsular polysaccharides (CPS10A) of Streptococcus pneumoniae (Spn10A) led to the identification of CPS10A-binding nAbs in serum.

View Article and Find Full Text PDF

Background: Modern elite football places extremely high demands on the athlete's body, so it is of practical interest to study the effect of various dietary supplements on load tolerance and postexercise recovery. Furthermore, there is a lack of research on the effects of caffeine on key measures of load tolerance in football such as delayed-onset muscle soreness (DOMS), rate of perceived exertion (RPE) and heart rate (HR) at different time points after the exercise.

Methods: 54 young players aged 15-17 years from a leading Russian football academy took part in a randomised trial using the balanced placebo design.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!