In this study, the metabolomics characterization focusing on the carotenoid composition of ten cassava (Manihot esculenta) genotypes cultivated in southern Brazil by UV-visible scanning spectrophotometry and reverse phase-high performance liquid chromatography was performed. Cassava roots rich in β-carotene are an important staple food for populations with risk of vitamin A deficiency. Cassava genotypes with high pro-vitamin A activity have been identified as a strategy to reduce the prevalence of deficiency of this vitamin. The data set was used for the construction of a descriptive model by chemometric analysis. The genotypes of yellow-fleshed roots were clustered by the higher concentrations of cis-β-carotene and lutein. Inversely, cream-fleshed roots genotypes were grouped precisely due to their lower concentrations of these pigments, as samples rich in lycopene (red-fleshed) differed among the studied genotypes. The analytical approach (UV-Vis, HPLC, and chemometrics) used showed to be efficient for understanding the chemodiversity of cassava genotypes, allowing to classify them according to important features for human health and nutrition.

Download full-text PDF

Source
http://dx.doi.org/10.2390/biecoll-jib-2015-280DOI Listing

Publication Analysis

Top Keywords

cassava genotypes
12
uv-visible scanning
8
scanning spectrophotometry
8
chemometric analysis
8
manihot esculenta
8
genotypes
7
cassava
5
spectrophotometry chemometric
4
analysis tools
4
tools carotenoids
4

Similar Publications

The complexity of selecting for drought tolerance in cassava, influenced by multiple factors, demands innovative approaches to plant selection. This study aimed to identify cassava clones with tolerance to water stress by employing truncated selection and selection based on genomic values for population improvement and genotype evaluation . The Best Linear Unbiased Predictions (BLUPs), Genomic Estimated Breeding Values (GEBVs), and Genomic Estimated Genotypic Values (GETGVs) were obtained based on different prediction models via genomic selection.

View Article and Find Full Text PDF

The expansion of Semi-Autotrophic Hydroponics technology to address the issue of multiplying and disseminating virus-free planting materials for vegetatively propagated crops is challenged by the utilization of imported substrate, namely, KlasmannTS3. In this study, we evaluated the growth parameters and cutting production of cassava genotypes during three subsequent plantlet production cycles using three single substrates, namely, KlasmannTS3 (K), vermiculite (V), and local peat (P), and three blended substrates. The blended substrates were a combination of 25% K and 75% P (K25P75), a combination of V and P at respective rates of 25% and 75% (V25P75), and respective rates of 10% and 90% (V10P90).

View Article and Find Full Text PDF

The variability in genetic variance and covariance due to genotype × environment interaction (G×E) can hinder genotype selection accuracy, especially for complex traits. This study analyzed G×E interactions in cassava to identify stable, high-performing genotypes and predict agronomic performance in untested environments using factor analytic multiplicative mixed models (FAMM) within multi-environment trials (METs). We evaluated 22 cassava genotypes for fresh root yield (FRY), dry root yield (DRY), shoot yield (ShY), and dry matter content (DMC) across 55 Brazilian environments.

View Article and Find Full Text PDF

Molecular Diversity and Distribution of Whiteflies () in Cassava Fields Across South West and North Central, Nigeria.

Insects

November 2024

Regional Center of Excellence for Transboundary Plant Pathogens, Central and West African Virus Epidemiology (WAVE), Pôle Scientifique et d'Innovation, Université Félix Houphouët-Boigny, Abidjan BPV 34, Côte d'Ivoire.

Whitefly (Gennadium, Hemiptera) causes severe damage to cassava plants through excessive feeding on leaves and transmitting viruses, such as (ACMV), (EACMV), and ipomoviruses that cause cassava brown streak disease. Currently, little is known about the molecular diversity and distribution of whitefly species in the major cassava-growing zones of Nigeria. This study aimed to address the knowledge gap by assessing the genetic diversity, distribution, and associated cassava mosaic begomoviruses (CMBs) in whiteflies across South West and North Central, Nigeria.

View Article and Find Full Text PDF

Genome-wide association studies unveils the genetic basis of cell wall composition and saccharification of cassava pulp.

Plant Physiol Biochem

January 2025

Department of Genetics, Faculty of Science, Kasetsart University, 50 Ngam Wong Wan Road, Chatuchak, Bangkok, 10900, Thailand; Omics Center for Agriculture, Bioresources, Food and Health, Kasetsart University (OmiKU), Bangkok, Thailand; Center of Advanced Studies for Tropical Natural Resources, Kasetsart University, 50 Ngam Wong Wan Road, Chatuchak, Bangkok, 10900, Thailand. Electronic address:

Article Synopsis
  • Cassava is a vital crop for producing starch and biofuels, and this study investigates its polysaccharide composition and efficiency of converting its pulp into sugars through genome-wide association studies (GWAS).
  • Researchers analyzed 135 inbred lines and found significant genetic variations linked to biomass traits, with notable SNPs pointing to a complex genetic makeup that influences saccharification potential and monosaccharide traits.
  • The study identified key candidate genes related to stress responses affecting cell wall composition, which offer valuable insights for breeding cassava varieties tailored for better industrial use.
View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!