The order of reaction, especially in 1,3-dipolar cycloadditions directly affects the products' stereo selectivity. Due to this fact that a wide range of heterocyclic rings of natural products and biologically active molecules are synthesizing via this valuable procedure, understanding about the order of this reaction is so useful in designing the synthesis of different types of heterocyclic species. Therefore, the order of 1, 3-dipolar reaction has been carefully studied by many researchers but it seems that this question is still open despite many valuable answers. Considering this, in the present work, it is attempted to pursue this subject by theoretical investigation of any possible pathway of 1, 3-dipolar reaction of tetra amino ethylene as a highly electron rich dipolarophile and trifluoro methyl azide as an electron poor 1,3-dipole. During the calculations, one, two, and three step mechanism(s) have been found to be possible for the present 1, 3-dipolar reaction.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.2174/1386207319666151216145408 | DOI Listing |
J Phys Chem A
January 2025
Centro de Bioinformática, Simulación y Modelado (CBSM), Departamento de Bioinformática, Facultad de Ingeniería, Universidad de Talca, Talca 3465548, Chile.
In this research, we investigated the essential role of biogenic volatile organic compound emissions in regulating tropospheric ozone levels, atmospheric chemistry, and climate dynamics. We explored linalool ozonolysis and secondary organic aerosol formation mechanisms, providing key insights into atmospheric processes. Computational techniques, such as density functional theory calculations and molecular dynamics simulations, were employed for the analysis.
View Article and Find Full Text PDFBioorg Chem
February 2025
N.N. Vorozhtsov Novosibirsk Institute of Organic Chemistry, Siberian Branch of the Russian Academy of Sciences, Lavrentyev Avenue 9, Novosibirsk 630090, Russia. Electronic address:
Eudesmane-type sesquiterpene lactone isoalantolactone 1 is of great interest due to its availability, biological activity and synthetic application. Respective series of original spirocyclic (11S,5') (1,2,3-triazoline-eudesma-4,15-enolides) and (11S)-aziridine-eudesma-4,15-enolides were efficiently synthesized via a chemoselective 1,3-dipolar cycloaddition reaction of organic azides to the exocyclic double bond of the lactone ring of isoalantolactone or 13E-(aryl)isoalantolactones by heating in DMF or toluene. The thermal reactions of isoalantolactone with benzyl azide, 2-azidoethanol, or n-butyl azide in 2-methoxyethanol afforded 13-(alkyamino)isoalantolactones formed as a mixture of (Z) and (E)-isomers.
View Article and Find Full Text PDFJ Org Chem
January 2025
Department of Medical Chemistry, Faculty of Chemistry, Adam Mickiewicz University, Uniwersytetu Poznańskiego 8, 61-614 Poznań, Poland.
There has been a long search for a simple preparation of new cyclic analogues of ionophore antibiotics. We report a simple and general synthesis of three new cyclic derivatives of polyether ionophore, monensin A (MON). The application of the Huisgen 1,3-dipolar cycloaddition of azides and terminal alkynes to macrocyclization results in a concise, synthetic route to monensin lacton or lactam in only 4 steps.
View Article and Find Full Text PDFMacromol Rapid Commun
January 2025
Department of Chemical Science and Engineering, Graduate School of Engineering, Kobe University, 1-1 Rokkodai, Nada-ku, Kobe, 657-8501, Japan.
Here, "direct click bonding" of solid materials is proposed, which is the direct bonding of solid surfaces via the formation of covalent bonds without any adhesive. The present study shows that the Cu-free Huisgen 1,3-dipolar cycloaddition reaction proceeds between solid surfaces displaying cyclooctyne and azide groups, and it achieved the strong bonding of dissimilar solid materials as a macroscopic reaction. The bonding strength obtained is sufficiently high for practical use, and the strength can be controlled by the surface density of the cyclooctyne groups.
View Article and Find Full Text PDFChem Biodivers
January 2025
Department of Sciences and Humanities, Matrusri Engineering College, Hyderabad, Telangana, India.
In this work, we have adopted an easy route to synthesize bis-1,2,3-triazole-based benzophenone compounds via a 1,3-dipolar cycloaddition reaction (Click chemistry). All the target compounds achieved better yields through the microwave-assisted method than the conventional method. Target compound structures were confirmed on the basis of the IR, H NMR, C NMR, and HR mass analysis.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!