Several neurodegenerative amyloidoses, including Huntington disease, are caused by expansion of polyglutamine (polyQ) stretches in otherwise unrelated proteins. In a yeast model, an N-terminal fragment of mutant huntingtin with a stretch of 103 glutamine residues aggregates and causes toxicity, while its non-toxic wild type variant with a sequence of 25 glutamines (Htt25Q) does not aggregate. Here, we observed that non-toxic polymers of various proteins with glutamine-rich domains could seed polymerization of Htt25Q, which caused toxicity by seeding polymerization of the glutamine/asparagine-rich Sup35 protein thus depleting the soluble pools of this protein and its interacting partner, Sup45. Importantly, only polymers of Htt25Q, but not of the initial benign polymers, induced Sup35 polymerization, indicating an intermediary role of Htt25Q in cross-seeding Sup35 polymerization. These data provide a novel insight into interactions between amyloidogenic proteins and suggest a possible role for these interactions in the pathogenesis of Huntington and other polyQ diseases.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC4682096 | PMC |
http://dx.doi.org/10.1038/srep18407 | DOI Listing |
Front Mol Neurosci
July 2024
Department of Biochemistry, The University of Washington, Seattle, WA, United States.
Prion variants are self-perpetuating conformers of a single protein that assemble into amyloid fibers and confer unique phenotypic states. Multiple prion variants can arise, particularly in response to changing environments, and interact within an organism. These interactions are often competitive, with one variant establishing phenotypic dominance over the others.
View Article and Find Full Text PDFJ Colloid Interface Sci
November 2024
Institut de Biotecnologia i de Biomedicina (IBB) and Departament de Bioquímica i Biologia Molecular; Universitat Autònoma de Barcelona, 08193 Bellaterra (Barcelona), Spain. Electronic address:
The recent coronavirus disease 2019 (COVID-19) pandemic caused by the severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) has spurred intense research efforts to develop new materials with antiviral activity. In this study, we genetically engineered amyloid-based nanofibrils for capturing and neutralizing SARS-CoV-2. Building upon the amyloid properties of a short Sup35 yeast prion sequence, we fused it to SARS-CoV-2 receptor-binding domain (RBD) capturing proteins, LCB1 and LCB3.
View Article and Find Full Text PDFViruses
July 2022
Department of Biological Sciences, Marquette University, Milwaukee, WI 53233, USA.
Yeast prions are self-perpetuating misfolded proteins that are infectious. In yeast, [] is the prion form of the Sup35 protein. While the study of [] has revealed important cellular mechanisms that contribute to prion propagation, the underlying cellular factors that influence prion formation are not well understood.
View Article and Find Full Text PDFMol Biol (Mosk)
April 2022
Department of Genetics and Biotechnology, St. Petersburg State University, St. Petersburg, 199034 Russia.
The review discusses the role that proteins interacting with the translation termination factors eRF1 and eRF3 play in the control of protein synthesis and prionization. These proteins interact not only with each other, but also with many other proteins involved in controlling the efficiency of translation termination, and associate translation termination with other cell processes. The termination of translation is directly related not only to translation re-initiation and ribosome recycling, but also to mRNA stability and protein quality control.
View Article and Find Full Text PDFPrion
January 2019
a Department of Genetics and Biotechnology , St. Petersburg State University, St. Petersburg , Russian Federation.
Amyloids are non-branching fibrils that are composed of stacked monomers stabilized by intermolecular β-sheets. Some amyloids are associated with incurable diseases, whereas others, functional amyloids, regulate different vital processes. The prevalence and significance of functional amyloids in wildlife are still poorly understood.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!