Norovirus mechanisms of immune antagonism.

Curr Opin Virol

College of Medicine, Department of Molecular Genetics & Microbiology, Emerging Pathogens Institute, University of Florida, Gainesville, FL, United States. Electronic address:

Published: February 2016

Noroviruses are a leading cause of gastroenteritis outbreaks globally. Several lines of evidence indicate that noroviruses can antagonize or evade host immune responses, including the absence of long-lasting immunity elicited during a primary norovirus exposure and the ability of noroviruses to establish prolonged infections that are associated with protracted viral shedding. Specific norovirus proteins possessing immune antagonist activity have been described in recent years although mechanistic insight in most cases is limited. In this review, we discuss these emerging strategies used by noroviruses to subvert the immune response, including the actions of two nonstructural proteins (p48 and p22) to impair cellular protein trafficking and secretory pathways; the ability of the VF1 protein to inhibit cytokine induction; and the ability of the minor structural protein VP2 to regulate antigen presentation. We also discuss the current state of the understanding of host and viral factors regulating the establishment of persistent norovirus infections along the gastrointestinal tract. A more detailed understanding of immune antagonism by pathogenic viruses will inform prevention and treatment of disease.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC4821668PMC
http://dx.doi.org/10.1016/j.coviro.2015.11.005DOI Listing

Publication Analysis

Top Keywords

immune antagonism
8
immune
5
norovirus
4
norovirus mechanisms
4
mechanisms immune
4
noroviruses
4
antagonism noroviruses
4
noroviruses leading
4
leading gastroenteritis
4
gastroenteritis outbreaks
4

Similar Publications

Unlabelled: While a balanced diet can fulfill most nutritional needs, optimizing the composition of specific foods like broccoli can amplify their health benefits.

Background/objectives: Broccoli ( L. Italica group) is a widely consumed cruciferous vegetable valued for its gastrointestinal and immune health benefits.

View Article and Find Full Text PDF

Takayasu arteritis: a geographically distant but immunologically proximal MHC-I-opathy.

Lancet Rheumatol

January 2025

Section of Musculoskeletal Disease, NIHR Leeds Musculoskeletal Biomedical Research Centre, Leeds Institute of Rheumatic and Musculoskeletal Medicine, University of Leeds, Chapel Allerton Hospital, Leeds, UK. Electronic address:

Takayasu arteritis, a granulomatosis vasculitis with a pathogenesis that is poorly defined but known to be associated with HLA-B*52, shares many features with other MHC-I-opathies. In addition to the shared clinical features of inflammatory bowel diseases, cutaneous inflammation, and HLA-B*52, is shared association of an IL12B single- nucleotide polymorphism encoding the common IL-12 and IL-23 p40 subunit, which might affect not only type 17 cytokine responses, but also IFNγ and TNF production-the cardinal type 1 cytokines in granuloma formation. Considering the translational context of responses to TNF inhibition in Takayasu arteritis, in this Personal View we propose Takayasu arteritis as a type 1 MHC-I-opathy.

View Article and Find Full Text PDF

Intra-abdominal sepsis is a life-threatening complex syndrome caused by microbes in the gut microbiota invading the peritoneal cavity. It is one of the major complications of intra-abdominal surgery. To date, only supportive therapies are available.

View Article and Find Full Text PDF

Background: The freshwater snails Biomphalaria alexandrina and Bulinus trancatus are key contributors to the transmission of S. mansoni and S.haematobium, respectively, for being their intermediate hosts.

View Article and Find Full Text PDF

As an essential type of vaccine, live attenuated vaccines (LAVs) play a crucial role in animal disease prevention and control. Nevertheless, developing LAVs faces the challenge of balancing safety and efficacy. Understanding the mechanisms animal viruses use to antagonize host antiviral innate immunity may help to precisely regulate vaccine strains and maintain strong immunogenicity while reducing their pathogenicity.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!