Millions of people rely on the ecosystem services provided by coral reefs, but sustaining these benefits requires an understanding of how reefs and their biotic communities are affected by local human-induced disturbances and global climate change. Ecosystem-based management that explicitly considers the indirect and cumulative effects of multiple disturbances has been recommended and adopted in policies in many places around the globe. Ecosystem models give insight into complex reef dynamics and their responses to multiple disturbances and are useful tools to support planning and implementation of ecosystem-based management. We adapted the Atlantis Ecosystem Model to incorporate key dynamics for a coral reef ecosystem around Guam in the tropical western Pacific. We used this model to quantify the effects of predicted climate and ocean changes and current levels of current land-based sources of pollution (LBSP) and fishing. We used the following six ecosystem metrics as indicators of ecosystem state, resilience and harvest potential: 1) ratio of calcifying to non-calcifying benthic groups, 2) trophic level of the community, 3) biomass of apex predators, 4) biomass of herbivorous fishes, 5) total biomass of living groups and 6) the end-to-start ratio of exploited fish groups. Simulation tests of the effects of each of the three drivers separately suggest that by mid-century climate change will have the largest overall effect on this suite of ecosystem metrics due to substantial negative effects on coral cover. The effects of fishing were also important, negatively influencing five out of the six metrics. Moreover, LBSP exacerbates this effect for all metrics but not quite as badly as would be expected under additive assumptions, although the magnitude of the effects of LBSP are sensitive to uncertainty associated with primary productivity. Over longer time spans (i.e., 65 year simulations), climate change impacts have a slight positive interaction with other drivers, generally meaning that declines in ecosystem metrics are not as steep as the sum of individual effects of the drivers. These analyses offer one way to quantify impacts and interactions of particular stressors in an ecosystem context and so provide guidance to managers. For example, the model showed that improving water quality, rather than prohibiting fishing, extended the timescales over which corals can maintain high abundance by at least 5-8 years. This result, in turn, provides more scope for corals to adapt or for resilient species to become established and for local and global management efforts to reduce or reverse stressors.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC4682628 | PMC |
http://journals.plos.org/plosone/article?id=10.1371/journal.pone.0144165 | PLOS |
Arch Environ Contam Toxicol
January 2025
Center for Fisheries, Aquaculture and Aquatic Sciences, School of Biological Sciences, Southern Illinois University, Carbondale, IL, 62901, USA.
Aquatic systems are impacted by temperature fluctuations which can alter the toxicity of pesticides. Increased temperatures related to climate change have elevated pest activity, resulting in an escalation of pesticide use. One such pesticide class, pyrethroids, has replaced the use of several banned pesticides due to its low mammalian toxicity.
View Article and Find Full Text PDFInt J Environ Health Res
January 2025
Health Sciences Institute, University for International Integration of the Afro-Brazilian Lusophony, Redenção, Ceará, Brazil.
Climate change poses a significant threat to human health. Long-term climate effects on childhood asthma hospitalizations depend on the population's geographic region. These effects in tropical drylands are not well understood.
View Article and Find Full Text PDFMol Ecol
January 2025
Department of Environmental Toxicology, University of California Davis, Davis, California, USA.
Characterising patterns of genetic diversity including evidence of local adaptation is relevant for predicting and managing species recovering from overexploitation in the face of climate change. Red abalone (Haliotis rufescens) is a species of conservation concern due to recent declines from overharvesting, disease and climate change, resulting in the closure of commercial and recreational fisheries. Using whole-genome resequencing data from 23 populations spanning their entire range (southern Oregon, USA, to Baja California, MEX) we investigated patterns of population connectivity and genotype-environment associations that would reveal local adaptation across the mosaic of coastal environments that define the California Current System (CCS).
View Article and Find Full Text PDFMol Ecol
January 2025
Department of Biology, Colorado State University, Fort Collins, Colorado, USA.
Identifying populations at highest risk from climate change is a critical component of conservation efforts. However, vulnerability assessments are usually applied at the species level, even though intraspecific variation in exposure, sensitivity and adaptive capacity play a crucial role in determining vulnerability. Genomic data can inform intraspecific vulnerability by identifying signatures of local adaptation that reflect population-level variation in sensitivity and adaptive capacity.
View Article and Find Full Text PDFAm J Bot
January 2025
Pacific Biosciences Research Center, University of Hawai'i at Mānoa, Honolulu, HI, USA.
Premise: The ability of plants to adapt or acclimate to climate change is inherently linked to their interactions with symbiotic microbes, notably fungi. However, it is unclear whether fungal symbionts from different climates have different impacts on the outcome of plant-fungal interactions, especially under environmental stress.
Methods: We tested three provenances of fungal inoculum (originating from dry, moderate or wet environments) with one host plant genotype exposed to three soil moisture regimes (low, moderate and high).
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!