A PHP Error was encountered

Severity: Warning

Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests

Filename: helpers/my_audit_helper.php

Line Number: 176

Backtrace:

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 1034
Function: getPubMedXML

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3152
Function: GetPubMedArticleOutput_2016

File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global

File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword

File: /var/www/html/index.php
Line: 316
Function: require_once

Soyasaponin Ab inhibits lipopolysaccharide-induced acute lung injury in mice. | LitMetric

Soyasaponin Ab (SA) has been reported to have anti-inflammatory effect. However, the effects of SA on lipopolysaccharide (LPS)-induced acute lung injury (ALI) have not been reported. The aim of this study was to investigate the anti-inflammatory effects of SA on LPS-induced ALI and clarify the possible mechanism. The mice were stimulated with LPS to induce ALI. SA was given 1h after LPS treatment. 12h later, lung tissues were collected to assess pathological changes and edema. Bronchoalveolar lavage fluid (BALF) was collected to assess inflammatory cytokines and nitric oxide (NO) production. In vitro, mice alveolar macrophages were used to investigate the anti-inflammatory mechanism of SA. Our results showed that SA attenuated LPS-induced lung pathological changes, edema, the expression of cycloxygenase-2 (COX-2) and inducible nitric oxide synthase (iNOS) in lung tissues, as well as TNF-α, IL-6, IL-1β, and NO production in mice. Meanwhile, SA up-regulated the activities of superoxide dismutase (SOD) and catalase decreased by LPS in mice. SA also inhibited LPS-induced TNF-α, IL-6 and IL-1β production as well as NF-κB activation in alveolar macrophages. Furthermore, SA could activate Liver X Receptor Alpha (LXRα) and knockdown of LXRα by RNAi abrogated the anti-inflammatory effects of SA. In conclusion, the current study demonstrated that SA exhibited protective effects against LPS-induced acute lung injury and the possible mechanism was involved in activating LXRα, thereby inhibiting LPS-induced inflammatory response.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.intimp.2015.12.001DOI Listing

Publication Analysis

Top Keywords

acute lung
12
lung injury
12
anti-inflammatory effects
12
lps-induced acute
8
investigate anti-inflammatory
8
effects lps-induced
8
lung tissues
8
collected assess
8
pathological changes
8
changes edema
8

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!