We demonstrate that different sets of Lennard-Jones parameters proposed for the Na(+) ion, in conjunction with the empirical combining rules routinely used in simulation packages, can lead to essentially different equilibrium structures for a deprotonated poly-L-glutamic acid molecule (poly-L-glutamate) dissolved in a 0.3M aqueous NaCl solution. It is, however, difficult to discriminate a priori between these model potentials; when investigating the structure of the Na(+)-solvation shell in bulk NaCl solution, all parameter sets lead to radial distribution functions and solvation numbers in broad agreement with the available experimental data. We do not find any such dependency of the equilibrium structure on the parameters associated with the Cl(-) ion. This work does not aim at recommending a particular set of parameters for any particular purpose. Instead, it stresses the model dependence of simulation results for complex systems such as biomolecules in solution and thus the difficulties if simulations are to be used for unbiased predictions, or to discriminate between contradictory experiments. However, this opens the possibility of validating a model specifically in view of analyzing experimental data believed to be reliable.

Download full-text PDF

Source
http://dx.doi.org/10.1063/1.4937156DOI Listing

Publication Analysis

Top Keywords

equilibrium structure
8
nacl solution
8
experimental data
8
cation model
4
model equilibrium
4
structure poly-l-glutamate
4
poly-l-glutamate aqueous
4
aqueous sodium
4
sodium chloride
4
solution
4

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!