Balsalobre-Fernández, C, Kuzdub, M, Poveda-Ortiz, P, and Campo-Vecino, Jd. Validity and reliability of the PUSH wearable device to measure movement velocity during the back squat exercise. J Strength Cond Res 30(7): 1968-1974, 2016-The purpose of this study was to analyze the validity and reliability of a wearable device to measure movement velocity during the back squat exercise. To do this, 10 recreationally active healthy men (age = 23.4 ± 5.2 years; back squat 1 repetition maximum [1RM] = 83 ± 8.2 kg) performed 3 repetitions of the back squat exercise with 5 different loads ranging from 25 to 85% 1RM on a Smith Machine. Movement velocity for each of the total 150 repetitions was simultaneously recorded using the T-Force linear transducer (LT) and the PUSH wearable band. Results showed a high correlation between the LT and the wearable device mean (r = 0.85; standard error of estimate [SEE] = 0.08 m·s) and peak velocity (r = 0.91, SEE = 0.1 m·s). Moreover, there was a very high agreement between these 2 devices for the measurement of mean (intraclass correlation coefficient [ICC] = 0.907) and peak velocity (ICC = 0.944), although a systematic bias between devices was observed (PUSH peak velocity being -0.07 ± 0.1 m·s lower, p ≤ 0.05). When measuring the 3 repetitions with each load, both devices displayed almost equal reliability (Test-retest reliability: LT [r = 0.98], PUSH [r = 0.956]; ICC: LT [ICC = 0.989], PUSH [ICC = 0.981]; coefficient of variation [CV]: LT [CV = 4.2%], PUSH [CV = 5.0%]). Finally, individual load-velocity relationships measured with both the LT (R = 0.96) and the PUSH wearable device (R = 0.94) showed similar, very high coefficients of determination. In conclusion, these results support the use of an affordable wearable device to track velocity during back squat training. Wearable devices, such as the one in this study, could have valuable practical applications for strength and conditioning coaches.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1519/JSC.0000000000001284 | DOI Listing |
JMIR Mhealth Uhealth
January 2025
Department of Learning and Workforce Development, The Netherlands Organisation for Applied Scientific Research, Soesterberg, Netherlands.
Background: Wearable sensor technologies, often referred to as "wearables," have seen a rapid rise in consumer interest in recent years. Initially often seen as "activity trackers," wearables have gradually expanded to also estimate sleep, stress, and physiological recovery. In occupational settings, there is a growing interest in applying this technology to promote health and well-being, especially in professions with highly demanding working conditions such as first responders.
View Article and Find Full Text PDFJMIR Mhealth Uhealth
January 2025
Institute for AI and Informatics in Medicine, Technical University of Munich, Munich, Germany.
Background: Artificial intelligence (AI) has already revolutionized the analysis of image, text, and tabular data, bringing significant advances across many medical sectors. Now, by combining with wearable inertial measurement units (IMUs), AI could transform health care again by opening new opportunities in patient care and medical research.
Objective: This systematic review aims to evaluate the integration of AI models with wearable IMUs in health care, identifying current applications, challenges, and future opportunities.
J Arthroplasty
January 2025
The Rubin Institute for Advanced Orthopedics, Baltimore, Maryland. Electronic address:
Introduction: Smartphone and wearable technologies are novel devices for monitoring postoperative mobility and recovery in total knee arthroplasty (TKA) patients. This systematic review of the highest-level evidence studies evaluated the advantages of these technologies in postoperative care, specifically focusing on 1) smartphone applications, 2) wearable devices, and 3) their combined use.
Methods: A systematic literature search from July 26, 2015, to June 13, 2024, identified Level-1 and -2 published studies investigating smartphone applications and wearables for monitoring post-TKA recovery.
Int J Biol Macromol
January 2025
College of Textile and Clothing Engineering, Soochow University, 199 Ren-ai Road, Suzhou 215123, China; Jiangsu Engineering Research Center of Textile Dyeing and Printing for Energy Conservation, Discharge Reduction and Cleaner Production (ERC), 215123, China; State Key Laboratory of Molecular Engineering of Polymers, Fudan University, Shanghai 200433, China. Electronic address:
Conductive organohydrogel fibers based on sodium alginate (SA) exhibit remarkable flexibility and electrical conductivity, making them ideal candidates for conformal skin adhesion and real-time monitoring of human activity signals. However, traditional conductive hydrogels often suffer from issues such as uneven distribution of conductive fillers, and achieving the integration of high mechanical strength, stretchability, and transparency using environmentally friendly methods remains a significant challenge. In this study, a novel and sustainable strategy was developed to fabricate dual-network organohydrogel fibers using sodium alginate as the primary material.
View Article and Find Full Text PDFTalanta
January 2025
Department of Materials Science and Engineering, Sharif University of Technology, Azadi Avenue, Tehran, 14588-89694, Iran; Center for Bioscience and Technology, Institute for Convergence Science and Technology, Sharif University of Technology, Tehran, 14588-89694, Iran; Fraunhofer Institute for Manufacturing Technology and Advanced Materials, 28359, Bremen, Germany. Electronic address:
Real-time monitoring of sweat using wearable devices faces challenges such as limited adhesion, mechanical flexibility, and accurate detection. In this work, we present a stretchable, adhesive, bilayer hydrogel-based patch designed for continuous monitoring of sweat pH and glucose levels using AI-assisted smartphones. The patch is composed of a bottom PVA hydrogel layer functionalized with colorimetric reagents and glucose oxidase enzyme, while the top PVA-sucrose layer enhances skin adhesion and protects against air moisture.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!