A PHP Error was encountered

Severity: Warning

Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests

Filename: helpers/my_audit_helper.php

Line Number: 176

Backtrace:

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 1034
Function: getPubMedXML

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3152
Function: GetPubMedArticleOutput_2016

File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global

File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword

File: /var/www/html/index.php
Line: 316
Function: require_once

Development and evaluation of mosquito-electrocuting traps as alternatives to the human landing catch technique for sampling host-seeking malaria vectors. | LitMetric

Background: The human landing catch (HLC) is the gold standard method for sampling host-seeking malaria vectors. However, the HLC is ethically questionable because it requires exposure of humans to potentially infectious mosquito bites.

Methods: Two exposure-free methods for sampling host-seeking mosquitoes were evaluated using electrocuting surfaces as potential replacements for HLC: (1) a previously evaluated, commercially available electrocuting grid (CA-EG) designed for killing flies, and (2) a custom-made mosquito electrocuting trap (MET) designed to kill African malaria vectors. The MET and the CA-EG were evaluated relative to the HLC in a Latin Square experiment conducted in the Kilombero Valley, Tanzania. The sampling consistency of the traps across the night and at varying mosquito densities was investigated. Estimates of the proportion of mosquitoes caught indoors (P(i)), proportion of human exposure occurring indoors (π(i)), and proportion of mosquitoes caught when most people are likely to be indoors (P(fl)) were compared for all traps.

Results: Whereas the CA-EG performed poorly (<10% of catch of HLC), sampling efficiency of the MET for sampling Anopheles funestus s.l. was indistinguishable from HLC indoors and outdoors. For Anopheles gambiae s.l., sampling sensitivity of MET was 20.9% (95% CI 10.3-42.2) indoors and 58.5% (95% CI 32.2-106.2) outdoors relative to HLC. There was no evidence of density-dependent sampling by the MET or CA-EG. Similar estimates of P(i) were obtained for An. gambiae s.l. and An. funestus s.l. from all trapping methods. The proportion of mosquitoes caught when people are usually indoors (P(fl)) was underestimated by the CA-EG and MET for An. gambiae s.l., but similar to the HLC for An. funestus. Estimates of the proportion of human exposure occurring indoors (π(i)) obtained from the CA-EG and MET were similar to the HLC for An. gambiae s.l., but overestimated for An. funestus.

Conclusions: The MET showed promise as an outdoor sampling tool for malaria vectors where it achieved >50% sampling sensitivity relative to the HLC. The CA-EG had poor sampling sensitivity outdoors and inside. With further modification, the MET could provide an efficient and safer alternative to the HLC for the surveillance of mosquito vectors outdoors.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC4681165PMC
http://dx.doi.org/10.1186/s12936-015-1025-4DOI Listing

Publication Analysis

Top Keywords

sampling host-seeking
12
malaria vectors
12
human landing
8
landing catch
8
host-seeking malaria
8
relative hlc
8
proportion mosquitoes
8
mosquitoes caught
8
sampling sensitivity
8
sampling
6

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!