We present a light trapping structure consisting of AuAg bimetallic nonalloyed nanoparticles (BNNPs) on cone-shaped GaAs subwavelength structures (SWSs), combining the advantages of plasmonic structures and SWSs for GaAs-based solar cell applications. To obtain efficient light trapping in solar cells, the optical properties' dependence on the size and composition of the Ag and Au metal nanoparticles was systematically investigated. Cone-shaped GaAs SWSs with AuAg BNNPs formed from an Au film of 12 nm and an Ag film of 10 nm exhibited the extremely low average reflectance (R(avg)) of 2.43% and the solar-weighted reflectance (SWR) of 2.38%, compared to that of a bare GaAs substrate (R(avg), 37.50%; SWR, 36.72%) in the wavelength range of 300 to 870 nm.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1364/OL.40.005798 | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!