Hypoxic-ischaemic encephalopathy is a leading cause of child death, with high mortality and morbidity, including cerebral palsy, epilepsy and cognitive disabilities. Hypoxia-ischaemia (HI) strongly up-regulates Signal Transducer and Activator of Transcription 3 (STAT3) in the immature brain. Our aim was to establish whether STAT3 up-regulation is associated with neonatal HI-brain damage and evaluate the phosphorylated STAT3-contribution from different cell types in eliciting damage. We subjected postnatal day seven mice to unilateral carotid artery ligation followed by 60 min hypoxia. Neuronal STAT3-deletion reduced cell death, tissue loss, microglial and astroglial activation in all brain regions. Astroglia-specific STAT3-deletion also reduced cell death, tissue loss and microglial activation, although not as strongly as the deletion in neurons. Systemic pre-insult STAT3-blockade at tyrosine 705 (Y705) with JAK2-inhibitor WP1066 reduced microglial and astroglial activation to a more moderate degree, but in a pattern similar to the one produced by the cell-specific deletions. Our results suggest that STAT3 is a crucial factor in neonatal HI-brain damage and its removal in neurons or astrocytes, and, to some extent, inhibition of its phosphorylation via JAK2-blockade reduces inflammation and tissue loss. Overall, the protective effects of STAT3 inactivation make it a possible target for a therapeutic strategy in neonatal HI. Current data show that neuronal and astroglial STAT3 molecules are involved in the pathways underlying cell death, tissue loss and gliosis following neonatal hypoxia-ischaemia, but differ with respect to the target of their effect. Y705-phosphorylation contributes to hypoxic-ischaemic histopathology. Protective effects of STAT3 inactivation make it a possible target for a therapeutic strategy in neonatal hypoxia-ischaemia.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC4843952PMC
http://dx.doi.org/10.1111/jnc.13490DOI Listing

Publication Analysis

Top Keywords

tissue loss
16
cell death
12
death tissue
12
signal transducer
8
transducer activator
8
activator transcription
8
transcription stat3
8
neonatal hi-brain
8
hi-brain damage
8
stat3-deletion reduced
8

Similar Publications

Creatinine production rate is an integrative indicator to monitor muscle status in critically ill patients.

Crit Care

January 2025

Department of Anesthesiology and Critical Care Medicine, Yokohama City University School of Medicine, 3-9 Fukuura, Kanazawa-ku, Yokohama, Kanagawa, 236-0004, Japan.

Background: Both quantitative and qualitative aspects of muscle status significantly impact clinical outcomes in critically ill patients. Comprehensive monitoring of baseline muscle status and its changes is crucial for risk stratification and management optimization. However, repeatable and accessible indicators are lacking.

View Article and Find Full Text PDF

Variational graph autoencoder for reconstructed transcriptomic data associated with NLRP3 mediated pyroptosis in periodontitis.

Sci Rep

January 2025

Department of Basic Sciences, Faculty of Dentistry, Universidad de Antioquia U de A, Medellín, 050010, Colombia.

The NLRP3 inflammasome, regulated by TLR4, plays a pivotal role in periodontitis by mediating inflammatory cytokine release and bone loss induced by Porphyromonas gingivalis. Periodontal disease creates a hypoxic environment, favoring anaerobic bacteria survival and exacerbating inflammation. The NLRP3 inflammasome triggers pyroptosis, a programmed cell death that amplifies inflammation and tissue damage.

View Article and Find Full Text PDF

Microglia are progressively activated by inflammation and exhibit phagocytic dysfunction in the pathogenesis of neurodegenerative diseases. Lipid-droplet-accumulating microglia were identified in the aging mouse and human brain; however, little is known about the formation and role of lipid droplets in microglial neuroinflammation of Alzheimer's disease (AD). Here, we report a striking buildup of lipid droplets accumulation in microglia in the 3xTg mouse brain.

View Article and Find Full Text PDF

Characterizing the Microstructural Transition at the Gray Matter-White Matter Interface: Implementation and Demonstration of Age-Associated Differences.

Neuroimage

January 2025

Department of Radiology, Columbia University Irving Medical Center, New York, NY; Department of Biomedical Engineering, Columbia University, New York, NY. Electronic address:

Background: The cortical gray matter-white matter interface (GWI) is a natural transition zone where the composition of brain tissue abruptly changes and is a location for pathologic change in brain disorders. While diffusion magnetic resonance imaging (dMRI) is a reliable and well-established technique to characterize brain microstructure, the GWI is difficult to assess with dMRI due to partial volume effects and is normally excluded from such studies.

Methods: In this study, we introduce an approach to characterize the dMRI microstructural profile across the GWI and to assess the sharpness of the microstructural transition from cortical gray matter (GM) to white matter (WM).

View Article and Find Full Text PDF

Embryonal tumors with multilayered rosettes (ETMRs) are rare and highly aggressive embryonal central nervous system tumors that predominantly affect infants younger than 3 years old. These tumors typically have a C19MC alteration (ETMR, C19MC-altered) or, more rarely, a DICER1 mutation (ETMR, DICER1-mutated). Post-chemotherapeutic or post-chemoradiotherapeutic histological changes of C19MC-altered ETMRs, such as maturation or loss of histological characteristics of ETMR have been described in several reports.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!