Rationale: Patients with advanced lung disease due to systemic sclerosis have long been considered suboptimal and often unacceptable candidates for lung transplant.

Objectives: To examine post-lung transplant survival of patients with systemic sclerosis compared with patients with pulmonary fibrosis and to identify risk factors for 1-year mortality.

Methods: In a retrospective cohort study, we compared post-lung transplant outcomes of 72 patients with scleroderma with those of 311 patients with pulmonary fibrosis between June 2005 and September 2013 at our institution. Actuarial survival estimates were calculated using Kaplan-Meier curves. In Cox regression models, we determined risk factors for post-transplant mortality, controlling for whether patients had scleroderma or pulmonary fibrosis.

Measurements And Main Results: Post-transplant survival did not differ significantly between scleroderma and pulmonary fibrosis at year 1 (81% scleroderma vs. 79% pulmonary fibrosis; P = 0.743), at year 5 conditional on 1-year survival (66% vs. 58%; P = 0.249), or overall (P = 0.385). In multivariate analysis, body mass index greater than or equal to 35 kg/m(2) predicted poor 1-year survival in pulmonary fibrosis (hazard ratio, 2.76; P = 0.003). Acute cellular rejection-free survival did not differ significantly between the scleroderma and pulmonary fibrosis cohorts. Patients with scleroderma had significantly better bronchiolitis obliterans syndrome stage 1 or higher-free survival than did patients with pulmonary fibrosis.

Conclusions: Our findings that 1- and 5-year survival rates of patients with scleroderma were similar to those of patients with pulmonary fibrosis indicate that lung transplant is a reasonable treatment option in selected patients with scleroderma.

Download full-text PDF

Source
http://dx.doi.org/10.1513/AnnalsATS.201503-177OCDOI Listing

Publication Analysis

Top Keywords

pulmonary fibrosis
32
patients scleroderma
24
patients pulmonary
16
patients
12
scleroderma pulmonary
12
pulmonary
10
scleroderma
9
lung transplant
8
fibrosis
8
systemic sclerosis
8

Similar Publications

Tissue remodeling during high-altitude pulmonary edema in rats: Biochemical and histomorphological analysis.

Tissue Cell

January 2025

Department of Human and Animal Physiology, Yerevan State University, Yerevan, 1 Alek Manukyan St, Yerevan 0025, Armenia; Research Institute of Biology, Yerevan State University, Yerevan, 1 Alek Manukyan St, Yerevan 0025, Armenia. Electronic address:

High altitude characterized by the low partial pressure of the oxygen is a life-threatening condition that contributes to the development of acute pulmonary edema and hypoxic lung injury. In this study, we aimed to investigate the contribution of some inflammatory and oxidative stress markers along with antioxidant system enzymes in the pathogenesis of HAPE (high-altitude pulmonary edema) formation. We incorporated the study on 42 male rats to unravel the role of mast cells (MCs) and TNF-α in the lung after the effect of acute hypobaric hypoxia.

View Article and Find Full Text PDF

Endocytic recycling is central to circadian collagen fibrillogenesis and disrupted in fibrosis.

Elife

January 2025

Wellcome Centre for Cell-Matrix Research, Faculty of Biology, Medicine and Health, University of Manchester, Manchester, United Kingdom.

Collagen-I fibrillogenesis is crucial to health and development, where dysregulation is a hallmark of fibroproliferative diseases. Here, we show that collagen-I fibril assembly required a functional endocytic system that recycles collagen-I to assemble new fibrils. Endogenous collagen production was not required for fibrillogenesis if exogenous collagen was available, but the circadian-regulated vacuolar protein sorting (VPS) 33b and collagen-binding integrin α11 subunit were crucial to fibrillogenesis.

View Article and Find Full Text PDF

Fibrotic and Emphysematous Murine Lung Mechanics Under Negative-Pressure Ventilation.

Am J Physiol Lung Cell Mol Physiol

January 2025

Department of Mechanical Engineering, University of California, Riverside CA, USA.

Chronic obstructive pulmonary disease (COPD) is the third leading cause of death worldwide and the progressive nature heightens the calamity of the disease. Despite countless existing COPD studies, lung mechanics are often reported under positive-pressure ventilation (PPV) and implications and extrapolations made from these studies pose serious restrictions as recent works have divulged disparate elastic and energetic results between PPV and more physiological negative-pressure counterparts (NPV). This non-equivalence of PPV and NPV needs to be investigated under diseased states to augment our understanding of disease mechanics.

View Article and Find Full Text PDF

Aim: To investigate histopathological changes in the lung tissue of long-COVID patients.

Methods: In this cross-sectional study, transbronchial lung biopsy was performed in long-COVID patients with persisting symptoms and radiological abnormalities. Histopathologic analyses were performed by using hematoxylin-eosin, Martius, Scarlet and Blue, Movat's, thyroid transcription factor 1, CD34, and CD68 staining.

View Article and Find Full Text PDF

Background: Chronic rhinosinusitis (CRS) and olfactory dysfunction (OD) are prevalent disease complications in people with cystic fibrosis. These understudied comorbidities significantly impact quality of life. The impact of highly effective modulator therapy (HEMT) in young children with cystic fibrosis (YCwCF) on these disease complications is unknown.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!