An Automated Miniaturized Method to Perform and Analyze Antimicrobial Drug Synergy Assays.

Assay Drug Dev Technol

Lead Identification, Department of Molecular Therapeutics, The Scripps Research Institute, Scripps Florida, Jupiter, Florida.

Published: December 2016

In the light of emerging antibiotic resistance mechanisms found in bacteria throughout the world, discovery of drugs that potentiate the effect of currently available antibiotics remains an important aspect of pharmaceutical research in the 21st century. Well-established clinical tests exist to determine synergy in vitro, but these are only optimal for low-throughput experimentation while leaving analysis of results and interpretation of high-throughput microscale assays poorly standardized. Here, we describe a miniaturized broth microdilution checkerboard assay and data analysis method in 384-well plate format that conforms to the Clinical Laboratory and Standards Institute (CLSI) methods. This method has been automated and developed to rapidly determine the synergism of current antibiotics with various beta-lactamase inhibitors emerging from our antimicrobial research efforts. This technique increases test throughput and integrity of results, and saves test compound and labor. We facilitated the interpretation of results with an automated analysis tool allowing us to rapidly qualify inter- and intraplate robustness, determine efficacy of multiple antibiotics at the same time, and standardize the results of synergy interpretation. This procedure should enhance high-throughput antimicrobial drug discovery and supersedes former techniques.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC4761817PMC
http://dx.doi.org/10.1089/adt.2015.672DOI Listing

Publication Analysis

Top Keywords

antimicrobial drug
8
automated miniaturized
4
miniaturized method
4
method perform
4
perform analyze
4
analyze antimicrobial
4
drug synergy
4
synergy assays
4
assays light
4
light emerging
4

Similar Publications

Didemnins, a class of cyclic depsipeptides derived from marine organisms exhibit notable anticancer properties. Among them, Didemnin B has been extensively researched for its strong antitumor activity and progression to clinical trials. Nonetheless, its clinical application has been impeded by challenges like poor bioavailability and dose-limiting toxicity.

View Article and Find Full Text PDF

The coronavirus disease 2019 (COVID-19) is a fatal disease caused by severe acute respiratory syndrome coronavirus-2 (SARS-CoV-2). To date, several vaccines have been developed to combat the spread of this virus. Mucosal vaccines using food-grade bacteria, such as Lactobacillus spp.

View Article and Find Full Text PDF

Effects of adjuvant hyperbaric oxygen therapy and real-time fluorescent imaging on deep sternal wound infection: a retrospective study.

J Wound Care

January 2025

Division of Plastic Surgery, Integrated Burn & Wound Care Center, Department of Surgery, Shuang-Ho Hospital, New Taipei City, Taiwan.

Objective: Deep sternal wound infection (DSWI) is a rare but devastating complication that is estimated to occur in 1-2% of patients after median sternotomy. Current standard of care (SoC) comprises antibiotics, debridement and negative pressure wound therapy (NPWT). Hyperbaric oxygen therapy (HBOT) appears to be an effective adjuvant therapy for osteomyelitis.

View Article and Find Full Text PDF

Objective: The presence of microorganisms in a wound may lead to the development of pathologically extensive inflammation, and either delay or prevent the healing of hard-to-heal (chronic) wounds. The aim of this case series is to explore the use of topical gentamicin ointment, an aminoglycoside with activity against aerobic Gram-negative bacteria, as an option to address hard-to-heal wounds.

Method: We present a retrospective case series of patients with hard-to-heal wounds of varying pathophysiologies treated with topical gentamicin.

View Article and Find Full Text PDF

Oscillation of the active form of the initiator protein DnaA (ATP-DnaA) allows for the timely regulation for chromosome replication. After initiation, DnaA-bound ATP is hydrolyzed, producing inactive ADP-DnaA. For the next round of initiation, ADP-DnaA interacts with the chromosomal locus DARS2 bearing binding sites for DnaA, a DNA-bending protein IHF, and a transcription activator Fis.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!