A PHP Error was encountered

Severity: Warning

Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests

Filename: helpers/my_audit_helper.php

Line Number: 176

Backtrace:

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 1034
Function: getPubMedXML

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3152
Function: GetPubMedArticleOutput_2016

File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global

File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword

File: /var/www/html/index.php
Line: 316
Function: require_once

[Year Discrimination of Mild Aroma Chinese Liquors Using Three-Dimensional Fluorescence Spectroscopy Combined with Parallel Factor and Neural Network]. | LitMetric

Three-dimensional fluorescence spectroscopy coupled with parallel factor analysis and neural network was applied to the year discrimination of mild aroma Chinese liquors. The excitation-emission fluorescence matrices (EEMs) of 120 samples with various years were measured by FLS920 fluorescence spectrometer. The trilinear decomposition of the data array was performed and the loading scores of and the excitation-emission profiles of four components were also obtained. The scores were employed as the inputs of the BP neural networks and the PARAFAC-BP identification model was constructed. 10 samples were collected from 10, 20 and 30 years of liquors respectively, and 30 samples were selected as the test sets. The remaining 90 samples were used as the training sets to build the training model. The year prediction of unknown samples was also carried out, and the prediction accuracy was 90%, 100% and 100%, respectively. Meanwhile, the discrimination analysis method and the multi-way partial least squares discriminant analysis were compared, namely PARAFAC-BP and NPLS-DA. The results indicated that parallel factor combined with the neural network (PARAFAC-BP) has higher prediction accuracy. The proposed method can effectively extract the spectral characteristics, and also reduce the dimension of the input variables of neural network. A good year discrimination result was finally achieved.

Download full-text PDF

Source

Publication Analysis

Top Keywords

parallel factor
12
neural network
12
discrimination mild
8
mild aroma
8
aroma chinese
8
chinese liquors
8
three-dimensional fluorescence
8
fluorescence spectroscopy
8
year discrimination
8
prediction accuracy
8

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!