Developing cost-effective electrocatalysts for the oxygen reduction reaction (ORR) is a prerequisite for broad market penetration of low-temperature fuel cells. A major barrier stems from the poisoning of surface sites by nonreactive oxygenated species and the sluggish ORR kinetics on the Pt catalysts. Herein we report a facile approach to accelerating ORR kinetics by using a hydrophobic ionic liquid (IL), which protects Pt sites from surface oxidation, making the IL-modified Pt intrinsically more active than its unmodified counterpart. The mass activity of the catalyst is increased by three times to 1.01 A mg(-1) Pt @0.9 V, representing a new record for pure Pt catalysts. The enhanced performance of the IL-modified catalyst can be stabilized after 30 000 cycles. We anticipate these results will form the basis for an unprecedented perspective in the development of high-performing electrocatalysts for fuel-cell applications.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1002/anie.201508338 | DOI Listing |
Acc Chem Res
January 2025
Molecular Sensing and Imaging Center, School of Chemistry and Chemical Engineering, Nanjing University, Nanjing 210023, China.
ConspectusIons are the crucial signaling components for living organisms. In cells, their transportation across pore-forming membrane proteins is vital for regulating physiological functions, such as generating ionic current signals in response to target molecule recognition. This ion transport is affected by confined interactions and local environments within the protein pore.
View Article and Find Full Text PDFBiomacromolecules
January 2025
Department of Applied Chemistry, Kyung Hee University, Yongin, Gyeonggi 17104, South Korea.
This study proposes fluorenylmethoxycarbonyl (Fmoc)-protected single amino acids (Fmoc-AAs) as a minimalistic model system to investigate liquid-liquid phase separation (LLPS) and the elusive liquid-to-solid transition of condensates. We demonstrated that Fmoc-AAs exhibit LLPS depending on the pH and ionic strength, primarily driven by hydrophobic interactions. Systematic examination of the conditions under which each Fmoc-AA undergoes LLPS revealed distinct residue-dependent trends in the critical concentrations and phase behavior.
View Article and Find Full Text PDFMolecules
January 2025
Plant Fiber Material Science Research Center, State Key Laboratory of Pulp and Paper Engineering, South China University of Technology, Guangzhou 510640, China.
Cellulose nanocrystals (CNCs) prepared by sulfuric acid hydrolysis were added to phthalocyanine green colour pastes with a surfactant to improve stability. The particle size, zeta potential, absorbance, and microstructure of the colour pastes were analyzed and characterized. The mechanism of CNCs to enhance the stability of hydrophobic phthalocyanine green in water was investigated.
View Article and Find Full Text PDFMolecules
January 2025
Department of Chemical Engineering, Louisiana Tech University, 600 Dan Reneau Drive, P.O. Box 10348, Ruston, LA 71272, USA.
Adequate water supplies are crucial for missions to the Moon, since water is essential for astronauts' health. Ionic liquids (ILs) have been investigated for processing metal oxides, the main components of lunar regolith, to separate oxygen and metals. The IL must be diluted in the process.
View Article and Find Full Text PDFFoods
January 2025
Jiangxi Key Laboratory of Natural Products and Functional Foods, College of Food Science and Engineering, Jiangxi Agricultural University, Nanchang 330045, China.
Egg-based yoghurt (EBY) is a novel yoghurt fermented by lactic acid bacteria with high nutritional and health values, serving as a potential alternative to milk-based yoghurt. However, the hardness, adhesiveness, and water-holding capacity of egg-based yoghurt need to be further improved. In this study, the improvement in EBY quality by gellan gum and its underlying mechanism were investigated.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!