Stem CO2 efflux (ES) plays an important role in the carbon balance of forest ecosystems. However, its primary controls at the global scale are poorly understood and observation-based global estimates are lacking. We synthesized data from 121 published studies across global forest ecosystems and examined the relationships between annual ES and biotic and abiotic factors at individual, biome, and global scales, and developed a global gridded estimate of annual ES . We tested the following hypotheses: (1) Leaf area index (LAI) will be highly correlated with annual ES at biome and global scales; (2) there will be parallel patterns in stem and root CO2 effluxes (RA) in all forests; (3) annual ES will decline with forest age; and (4) LAI coupled with mean annual temperature (MAT) and mean annual precipitation (MAP) will be sufficient to predict annual ES across forests in different regions. Positive linear relationships were found between ES and LAI, as well as gross primary production (GPP), net primary production (NPP), wood NPP, soil CO2 efflux (RS), and RA . Annual ES was correlated with RA in temperate forests after controlling for GPP and MAT, suggesting other additional factors contributed to the relationship. Annual ES tended to decrease with stand age. Leaf area index, MAT and MAP, predicted 74% of variation in ES at global scales. Our statistical model estimated a global annual ES of 6.7 ± 1.1 Pg C yr(-1) over the period of 2000-2012 with little interannual variability. Modeled mean annual ES was 71 ± 43, 270 ± 103, and 420 ± 134 g C m(2) yr(-1) for boreal, temperate, and tropical forests, respectively. We recommend that future studies report ES at a standardized constant temperature, incorporate more manipulative treatments, such as fertilization and drought, and whenever possible, simultaneously measure both aboveground and belowground CO2 fluxes.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1111/gcb.13188 | DOI Listing |
J Bacteriol
January 2025
Institute for Microbiology, Martin Luther University Halle-Wittenberg, Halle (Saale), Saxony-Anhalt, Germany.
Formic acid is an important source of reductant and energy for many microorganisms. Formate is also produced as a fermentation product, e.g.
View Article and Find Full Text PDFEnviron Sci Technol
January 2025
College of Natural Resources and Environment, Northwest A&F University, Yangling 712100, China.
Charosphere, a highly active zone between biochar and surrounding soil, is widely present in agricultural and wildfire-affected soils, yet whether reactive oxygen species (ROS) are produced within the charosphere remains unclear. Herein, the production and spatiotemporal evolution of charosphere ROS were explored. In situ ROS capture visualized a gradual decrease in ROS production with increasing distance from the biochar/soil interface.
View Article and Find Full Text PDFSci Rep
January 2025
USDA-ARS Poultry Production and Product Safety Research Unit, Fayetteville, AR, 72701, USA.
Insect farming is expected to increase in coming years, thus generating high quantities of frass (insect excreta). Frass valorization hinges on basic agronomic research prior to industry upscaling. Here, we investigated soil physiochemical properties, SMAF (Soil Management Assessment Framework) soil health, CO efflux, and bermudagrass [Cynodon dactylon (L.
View Article and Find Full Text PDFEnviron Sci Technol
January 2025
State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-products, Institute of Plant Virology, Ningbo University, Ningbo 315211, China.
Viruses are considered to regulate bacterial communities and terrestrial nutrient cycling, yet their effects on bacterial metabolism and the mechanisms of carbon (C) dynamics during dissolved organic matter (DOM) mineralization remain unknown. Here, we added active and inactive bacteriophages (phages) to soil DOM with original bacterial communities and incubated them at 18 or 23 °C for 35 days. Phages initially (1-4 days) reduced CO efflux rate by 13-21% at 18 °C and 3-30% at 23 °C but significantly ( < 0.
View Article and Find Full Text PDFChem Soc Rev
January 2025
Pharmaceutical Sciences Division, School of Pharmacy, University of Wisconsin Madison, Madison, WI 53705, USA.
Intracellular metal ions play essential roles in multiple physiological processes, including catalytic action, diverse cellular processes, intracellular signaling, and electron transfer. It is crucial to maintain intracellular metal ion homeostasis which is achieved by the subtle balance of storage and release of metal ions intracellularly along with the influx and efflux of metal ions at the interface of the cell membrane. Dysregulation of intracellular metal ions has been identified as a key mechanism in triggering programmed cell death (PCD).
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!