Severity: Warning
Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests
Filename: helpers/my_audit_helper.php
Line Number: 176
Backtrace:
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3122
Function: getPubMedXML
File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global
File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword
File: /var/www/html/index.php
Line: 316
Function: require_once
Chromosomal rearrangements resulting in the creation of novel gene products, termed fusion genes, have been identified as driving events in the development of multiple types of cancer. As these gene products typically do not exist in normal cells, they represent valuable prognostic and therapeutic targets. Advances in next-generation sequencing and computational approaches have greatly improved our ability to detect and identify fusion genes. Nevertheless, these approaches require significant computational resources. Here we describe an approach which leverages cloud computing technologies to perform fusion gene detection from RNA sequencing data at any scale. We additionally highlight methods to enhance reproducibility of bioinformatics analyses which may be applied to any next-generation sequencing experiment.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1007/978-1-4939-3204-7_13 | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!