Genotoxicity research takes an important place in traditional Chinese medicine safety evaluation. Genotoxicity test on traditional Chinese medicine has been paid great attention since 1970s. Currently, the most developed genotoxicity test methods included: bacterial reverse mutation test and mouse lymphoma assay which are used to detect relevant genetic changes, micronucleus test and chromosomal analysis which are used to measure chromosomal aberration, and single cell electrophoresis assay which is used to test DNA damage. This article reviews research progress on genotoxicity of traditional Chinese medicine, evaluation methods of genotoxicity, the problems and solutions on genotoxicity evaluation of traditional Chinese medicine, and new technique used in genotoxicity test.

Download full-text PDF

Source

Publication Analysis

Top Keywords

traditional chinese
20
chinese medicine
16
genotoxicity test
12
genotoxicity
7
test
6
traditional
5
chinese
5
[genotoxicity thought
4
thought method
4
method traditional
4

Similar Publications

Laser Wakefield Acceleration of Ions with a Transverse Flying Focus.

Phys Rev Lett

December 2024

Stanford University, Department of Mechanical Engineering, Stanford, California 94305, USA.

The extreme electric fields created in high-intensity laser-plasma interactions could generate energetic ions far more compactly than traditional accelerators. Despite this promise, laser-plasma accelerator experiments have been limited to maximum ion energies of ∼100  MeV/nucleon. The central challenge is the low charge-to-mass ratio of ions, which has precluded one of the most successful approaches used for electrons: laser wakefield acceleration.

View Article and Find Full Text PDF

The therapeutic effectiveness of acupuncture relies on both safety and stability, making these factors essential in acupuncture manipulation research. However, manual manipulation introduces unavoidable inaccuracies, which can impact the reliability of research findings. To address this challenge, a unique lifting and thrusting manipulation control cannula was designed in this study, offering flexible adjustment of movement amplitude.

View Article and Find Full Text PDF

Copper(II)-Catalyzed Asymmetric (3+3) Annulation of Diaziridines with Oxiranes.

Org Lett

January 2025

State Key Laboratory of Antiviral Drugs, Pingyuan Laboratory, Key Laboratory of Green Chemical Media and Reactions, Ministry of Education, Collaborative Innovation Center of Henan Province for Green Manufacturing of Fine Chemicals, School of Chemistry and Chemical Engineering, Henan Normal University, Xinxiang, Henan 453007, China.

Highly asymmetric (3+3) annulation of diaziridines with oxiranes via C-N bond cleavage in diaziridine was achieved under 10 mol % of chiral copper(II) complex as the catalyst under mild reaction conditions. With Cu(OTf) as the Lewis acid and C-symmetric imidazolidine-pyrroloimidazolone pyridine as the ligand, diverse tetrahydro-[1,3,4]-oxadiazines were obtained by stereospecific C-N/C-O bond formation in moderate to good yields (up to 93% yield) and high diastereo- (>20:1 dr) and enantioselectivities (up to 92% ee). The catalytic cycle and stereochemical model were proposed by DFT calculation.

View Article and Find Full Text PDF

Background: Diastasis recti abdominis (DRA), commonly occurring in postpartum women, is not only an aesthetic issue but is also highly associated with functional impairments. Various conservative treatment modalities have been employed in clinical practice to alleviate DRA. However, the comparative efficacy of these non-surgical treatments for improving the inter-recti distance (IRD) remains to be determined.

View Article and Find Full Text PDF

Ginkgolide B regulates apoptosis, oxidative stress, and mitochondrial dysfunction in MPP-induced SK-N-SH cells by targeting HDAC4/JNK pathway.

Naunyn Schmiedebergs Arch Pharmacol

January 2025

Huai'an Hospital Affiliated to Yangzhou University, The Fifth People's Hospital of Huai'an), 1 Huaihe East Road, Huaiyin District, Huai'an City, Jiangsu Province, China.

Ginkgolide B (GB) is a bioactive constituent found in Ginkgo biloba leaves that has been long recognized as a protective agent against many neurological disorders. Our study aimed to examine the effect of GB in an in vitro Parkinson's disease (PD) model and to investigate its neuroprotective mechanism as a primary objective. SK-N-SH cells were challenged with 1-methyl-4-phenylpyridinium (MPP) to act as a PD-like model of neuronal damage.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!