In this work, we examined the reassortant influenza virus strain A/17/Quail/Hong Kong/97/84 (H9N2) prepared at the Virology Department, Institute of Experimental Medicine, Russian Academy of Medical Sciences. The A/ Leningrad/134/17 (H2N2)-based vaccine candidate contained hemagglutinin and the neuraminidase from the nonpathogenic avian influenza A virus A(H9N2) of the G1 antigenic lineage. The vaccine candidate showed the ts-properties and cold adaptation. When administered intranasally to mice, the vaccine strain A(H9N2) was attenuated. It did not multiply in the lungs but was reproduced well in the nasal cavity, causing the production of the post-vaccination antibody. The A/17/Quail/Hong Kong/97/84(H9N2) virus was immunogenic when administered to mice as a LAIV intranasally or as a IIV intramuscularly. Intranasal A(H9N2) LAIV stimulated local production of the antibodies, which resulted in reduction in lung titers of the challenge virus G9.

Download full-text PDF

Source

Publication Analysis

Top Keywords

influenza virus
12
reassortant influenza
8
vaccine strain
8
strain a/17/quail/hong
8
a/17/quail/hong kong/97/84
8
vaccine candidate
8
virus
5
preclinical trial
4
trial reassortant
4
vaccine
4

Similar Publications

Epstein-Barr virus (EBV) establishes persistent infection, causes infectious mononucleosis, is a major trigger for multiple sclerosis and contributes to multiple cancers. Yet, knowledge remains incomplete about how the virus remodels host B cells to support lytic replication. We previously identified that EBV lytic replication results in selective depletion of plasma membrane (PM) B cell receptor (BCR) complexes, composed of immunoglobulin and the CD79A and CD79B signaling chains.

View Article and Find Full Text PDF

Influenza virus infects millions each year, contributing greatly to human morbidity and mortality. Upon viral infection, pathogen-associated molecular patterns activate pattern recognition receptors on host cells, triggering an immune response. The CD209 protein family, homologs of DC-SIGN (dendritic cell-specific intercellular adhesion molecule 3-grabbing nonintegrin), is thought to modulate immune responses to viruses.

View Article and Find Full Text PDF

Recent avian influenza outbreaks have heightened global concern over viral threats with the potential to significantly impact human health. Influenza is particularly alarming due to its history of causing pandemics and zoonotic reservoirs. In response, significant progress has been made toward the development of universal influenza vaccines, largely driven by the discovery of broadly neutralising antibodies (bnAbs), which have the potential to neutralise a broad range of influenza viruses, extending beyond the traditional strain-specific response.

View Article and Find Full Text PDF

Introduction: The H9N2 avian influenza virus is widely disseminated in poultry and poses a zoonotic threat, despite vaccination efforts. Mutations at residue 198 of hemagglutinin (HA) are critical for antigenic variation and receptor-binding specificity, but the underlying molecular mechanisms remain unclear. This study explores the molecular mechanisms by which mutations at the HA 198 site affect the antigenicity, receptor specificity, and binding affinity of the H9N2 virus.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!