Collagen cross-linking: when and how? A review of the state of the art of the technique and new perspectives.

Eye Vis (Lond)

Ophthalmology Department, Policlinico SS Annunziata, Center of Excellence and National High-Tech Center (CNAT) in Ophthalmology, University "G. d'Annunzio" of Chieti-Pescara, Via dei Vestini, 31 66100 Chieti, Italy.

Published: December 2015

Since the late 1990s corneal crosslinking (CXL) has been proposed as a new possibility to stop progression of keratoconus or secondary corneal ectasia, with the promising aim to prevent progressive visual loss due to the evolution of the pathology and to delay or avoid invasive surgical procedures such as corneal transplantation. The possibility of strengthening corneal tissue by means of a photochemical reaction of corneal collagen by the combined action of Riboflavin and ultraviolet A irradiation (UVA), radically modified the conservative management of progressive corneal ectasia. This is a review of the state of the art of CXL, reporting basic and clinical evidence. The paper describes basic principles, advantages and limits of different CXL techniques and possible future evolution of the procedure.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC4675057PMC
http://dx.doi.org/10.1186/s40662-015-0030-6DOI Listing

Publication Analysis

Top Keywords

review state
8
state art
8
corneal ectasia
8
corneal
6
collagen cross-linking
4
cross-linking how?
4
how? review
4
art technique
4
technique perspectives
4
perspectives late
4

Similar Publications

Therapeutic strategy for efficiently targeting cancer cells needs an in-depth understanding of the cellular and molecular interplay in the tumor microenvironment (TME). TME comprises heterogeneous cells clustered together to translate tumor initiation, migration, and proliferation. The TME mainly comprises proliferating tumor cells, stromal cells, blood vessels, lymphatic vessels, cancer-associated fibroblasts (CAFs), extracellular matrix (ECM), and cancer stem cells (CSC).

View Article and Find Full Text PDF

In cancer research and personalized medicine, mesoporous silica nanoparticles (MSNs) have emerged as a significant breakthrough in both cancer treatment and diagnosis. MSNs offer targeted drug delivery, enhancing therapeutic effectiveness while minimizing adverse effects on healthy cells. Due to their unique characteristics, MSNs provide targeted drug delivery, maximizing therapeutic effectiveness with minimal adverse effects on healthy cells.

View Article and Find Full Text PDF

Diabetes mellitus (DM) is recognized and classified as a group of conditions marked by persistent high blood glucose levels. It is also an inflammatory condition that may influence concurrent disease states, including Coronavirus Disease 2019 (COVID-19). Currently, no effective drug has been found to treat COVID-19, especially in DM patients.

View Article and Find Full Text PDF

Transcriptional engineering for value enhancement of oilseed crops: a forward perspective.

Front Genome Ed

January 2025

Biological and Life Sciences Division, School of Arts and Sciences, Ahmedabad University, Ahmedabad, Gujarat, India.

Plant-derived oils provide 20%-35% of dietary calories and are a primary source of essential omega-6 (linoleic) and omega-3 (α-linolenic) fatty acids. While traditional breeding has significantly increased yields in key oilseed crops like soybean, sunflower, canola, peanut, and cottonseed, overall gains have plateaued over the past few decades. Oilseed crops also experience substantial yield losses in both prime and marginal agricultural areas due to biotic and abiotic stresses and shifting agro-climates.

View Article and Find Full Text PDF

High-temperature reduction of TiO causes the gradual formation of structural defects, leading to oxygen vacancy planar defects and giving rise to Magnéli phases, which are substoichiometric titanium oxides that follow the formula Ti O, with 4 ≤ ≤ 9. A high concentration of defects provides several possible configurations for Ti and Ti within the crystal, with the variation in charge ordered states changing the electronic structure of the material. The changes in crystal and electronic structures of Magnéli phases introduce unique properties absent in TiO, facilitating their diverse applications.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!