Virtual reality visual feedback for hand-controlled scanning probe microscopy manipulation of single molecules.

Beilstein J Nanotechnol

Peter Grünberg Institut (PGI-3), Forschungszentrum Jülich, 52425 Jülich, Germany ; Jülich Aachen Research Alliance (JARA)-Fundamentals of Future Information Technology, 52425 Jülich, Germany.

Published: December 2015

Controlled manipulation of single molecules is an important step towards the fabrication of single molecule devices and nanoscale molecular machines. Currently, scanning probe microscopy (SPM) is the only technique that facilitates direct imaging and manipulations of nanometer-sized molecular compounds on surfaces. The technique of hand-controlled manipulation (HCM) introduced recently in Beilstein J. Nanotechnol. 2014, 5, 1926-1932 simplifies the identification of successful manipulation protocols in situations when the interaction pattern of the manipulated molecule with its environment is not fully known. Here we present a further technical development that substantially improves the effectiveness of HCM. By adding Oculus Rift virtual reality goggles to our HCM set-up we provide the experimentalist with 3D visual feedback that displays the currently executed trajectory and the position of the SPM tip during manipulation in real time, while simultaneously plotting the experimentally measured frequency shift (Δf) of the non-contact atomic force microscope (NC-AFM) tuning fork sensor as well as the magnitude of the electric current (I) flowing between the tip and the surface. The advantages of the set-up are demonstrated by applying it to the model problem of the extraction of an individual PTCDA molecule from its hydrogen-bonded monolayer grown on Ag(111) surface.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC4660913PMC
http://dx.doi.org/10.3762/bjnano.6.220DOI Listing

Publication Analysis

Top Keywords

virtual reality
8
visual feedback
8
scanning probe
8
probe microscopy
8
manipulation single
8
single molecules
8
manipulation
5
reality visual
4
feedback hand-controlled
4
hand-controlled scanning
4

Similar Publications

Unlabelled: Stroke patients are rarely asked about their responses to specific design attributes. Virtual reality (VR) offers a promising tool to explore how hospital environments are experienced after stroke.

Purpose: To gather perspectives and emotional responses regarding physical design attributes of hospital patient rooms after stroke.

View Article and Find Full Text PDF

Gesture-controlled reconfigurable metasurface system based on surface electromyography for real-time electromagnetic wave manipulation.

Nanophotonics

January 2025

Key Laboratory for Information Science of Electromagnetic Waves, School of Information Science and Technology, Fudan University, Shanghai 200433, China.

Gesture recognition plays a significant role in human-machine interaction (HMI) system. This paper proposes a gesture-controlled reconfigurable metasurface system based on surface electromyography (sEMG) for real-time beam deflection and polarization conversion. By recognizing the sEMG signals of user gestures through a pre-trained convolutional neural network (CNN) model, the system dynamically modulates the metasurface, enabling precise control of the deflection direction and polarization state of electromagnetic waves.

View Article and Find Full Text PDF

This literature review explores the emerging role of digital twin (DT) technology in ophthalmology, emphasizing its potential to revolutionize personalized medicine. DTs integrate diverse data sources, including genetic, environmental, and real-time patient data, to create dynamic, predictive models that enhance risk assessment, surgical planning, and postoperative care. The review highlights vital case studies demonstrating the application of DTs in improving the early detection and management of diseases such as glaucoma and age-related macular degeneration.

View Article and Find Full Text PDF

The neurosociological paradigm of the metaverse.

Front Psychol

January 2025

Neurointerfaces and Neurotechnologies Laboratory, Neurosciences Research Institute, Samara State Medical University, Samara, Russia.

Metaverse integrates people into the virtual world, and challenges depend on advances in human, technological, and procedural dimensions. Until now, solutions to these challenges have not involved extensive neurosociological research. The study explores the pioneering neurosociological paradigm in metaverse, emphasizing its potential to revolutionize our understanding of social interactions through advanced methodologies such as hyperscanning and interbrain synchrony.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!