Reversible protein phosphorylation is a central mechanism for both the transfer of intracellular information and the initiation of cellular responses. Within human medicine, considerable emphasis is placed on understanding and controlling the enzymes (kinases) that are responsible for catalyzing these modifications. This is evident in the prominent use of kinase inhibitors as drugs as well as the trend to understand complex biology and identify biomarkers via characterizations of global kinase (kinome) activity. Despite the demonstrated value of focusing on kinome activity, the application of this perspective to livestock has been restricted by the absence of appropriate research tools. In this review, we discuss the development of software platforms that facilitate the development and application of species-specific peptide arrays for kinome analysis of livestock. Examples of the application of kinomic approaches to a number of priority species (cattle, pigs, and chickens) in a number of biological contexts (infections, biomarker discovery, and food quality) are presented as are emerging trends for kinome analysis of livestock.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC4668848PMC
http://dx.doi.org/10.3389/fvets.2014.00004DOI Listing

Publication Analysis

Top Keywords

kinome analysis
12
analysis livestock
12
peptide arrays
8
arrays kinome
8
kinome activity
8
kinome
5
livestock
4
livestock species
4
species reversible
4
reversible protein
4

Similar Publications

Malignant peripheral nerve sheath tumors (MPNSTs) are aggressive sarcomas and the primary cause of mortality in patients with neurofibromatosis type 1 (NF1). These malignancies develop within preexisting benign lesions called plexiform neurofibromas (PNs). PNs are solely driven by biallelic loss eliciting RAS pathway activation, and they respond favorably to MEK inhibitor therapy.

View Article and Find Full Text PDF

Introduction: Treatment with Sunitinib, a potent multitargeted receptor tyrosine kinase inhibitor (TKI) has increased the progression-free survival (PFS) and overall-survival (OS) of patients with metastasized renal cell carcinoma (mRCC). With modest OS improvement and variable response and toxicity predictive and/or prognostic biomarkers are needed to personalize patient management: Prediction of individual TKI therapy response and resistance will increase successful treatment outcome while reducing unnecessary drug use and expense. The aim of this study was to investigate whether kinase activity analysis can predict sunitinib response and/or toxicity using tissue samples obtained from primary clear cell RCC (ccRCC) from a cohort of clinically annotated patients with mRCC receiving sunitinib as first-line treatment.

View Article and Find Full Text PDF
Article Synopsis
  • Protein kinases are crucial for plant growth and responses to stress, but research on these proteins in sunflowers is limited compared to other crops like soybean and cotton.
  • A comprehensive study identified 2,583 protein kinases in sunflowers, classifying them into 22 families and 121 subfamilies, with three specific subfamilies showing significant growth.
  • The research also analyzed how these kinases respond to different stresses, ultimately identifying 73 key protein kinases involved in essential signaling pathways, contributing valuable foundational data to the field.
View Article and Find Full Text PDF

HSPB4 and HSPB5 (α-crystallins) have shown increasing promise as neuroprotective agents, demonstrating several anti-apoptotic and protective roles in disorders such as multiple sclerosis and diabetic retinopathy. HSPs are highly regulated by post-translational modification, including deamidation, glycosylation, and phosphorylation. Among them, T148 phosphorylation has been shown to regulate the structural and functional characteristics of HSPB4 and underlie, in part, its neuroprotective capacity.

View Article and Find Full Text PDF

The human kinome has tremendous medical potential. In the past decade, mixed-lineage protein kinase 3 (MLK3) has emerged as an interesting and druggable target in oncogenic signaling. The important role of MLK3 has been demonstrated in several types of cancer.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!