Epidemiological studies have demonstrated the importance of cardiovascular diseases in Western countries. Among the cell types associated with a dysfunctional vasculature, smooth muscle (SM) cells are believed to play an essential role in the development of these illnesses. Vascular SM cells are key regulators of the vascular tone and also have an important function in the development of atherosclerosis and restenosis. While in the normal vasculature, contractile SM cells are predominant, in atherosclerotic vascular lesions, synthetic cells migrate toward the neointima, proliferate, and synthetize extracellular matrix proteins. In the present study, we have examined the role of caveolin-3 in the regulation of SM cell phenotype. Caveolin-3 is expressed in vivo in normal arterial SM cells, but its expression appears to be lost in cultured SM cells. Our data show that caveolin-3 expression in the A7r5 SM cell line is associated with increased expression of contractility markers such as SM α-actin, SM myosin heavy chain but decreased expression of the synthetic phenotype markers such as p-Elk and Klf4. Moreover, we also show that caveolin-3 expression can reduce proliferation upon treatment with LDL or PDGF. Finally, we show that caveolin-3-expressing SM cells are less sensitive to apoptosis than control cells upon treatment with oxidized LDL. Taken together, our data suggest that caveolin-3 can regulate the phenotypic switch between contractile and synthetic SM cells. A better understanding of the factors regulating caveolin-3 expression and function in this cell type will permit the development of a better comprehension of the factors regulating SM function in atherosclerosis and restenosis.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC4671348 | PMC |
http://dx.doi.org/10.3389/fcvm.2015.00027 | DOI Listing |
Acta Neuropathol Commun
January 2025
Department of Neurology, Mayo Clinic, Rochester, MN, 55905, USA.
Rippling Muscle Disease (RMD) is a rare skeletal myopathy characterized by abnormal muscular excitability manifesting with wave-like muscle contractions and percussion-induced muscle mounding. Hereditary RMD is associated with caveolin-3 or cavin-1 mutations. Recently, we identified cavin 4 autoantibodies as a biomarker of immune-mediated RMD (iRMD), though the underlying disease-mechanisms remain poorly understood.
View Article and Find Full Text PDFAm J Physiol Regul Integr Comp Physiol
February 2025
Curtin School of Allied Health, Curtin University, Perth, Western Australia, Australia.
Physical activity improves myocardial structure, function, and resilience via complex, incompletely defined mechanisms. We explored the effects of 1- to 2-wk swim training on cardiac and systemic phenotype in young male C57Bl/6 mice. Two-week forced swimming (90 min twice daily) resulted in cardiac hypertrophy (22% increase in heart:body weight, < 0.
View Article and Find Full Text PDFBr J Pharmacol
February 2025
Department of Anesthesiology, the Second Affiliated Hospital of Anhui Medical University, Hefei, China.
Muscle Nerve
January 2025
Department of Neurology, Mayo Clinic, Rochester, Minnesota, USA.
J Cachexia Sarcopenia Muscle
October 2024
Department of Biomedical Sciences, University of Padova, Padova, Italy.
Background: Degeneration of the motoneuron and neuromuscular junction (NMJ) and loss of motor units (MUs) contribute to age-related muscle wasting and weakness associated with sarcopenia. However, these features have not been comprehensively investigated in humans. This study aimed to compare neuromuscular system integrity and function at different stages of sarcopenia, with a particular focus on NMJ stability and MU properties.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!