We report herein a two or three step synthesis of fluorinated π-conjugated oligomers through iterative C-H bond arylations. Palladium-catalyzed desulfitative arylation of heteroarenes allowed in a first step the synthesis of fluoroaryl-heteroarene units in high yields. Then, the next steps involve direct arylation with aryl bromides catalyzed by PdCl(C3H5)(dppb) to afford triad or tetrad heteroaromatic compounds via regioselective activation of C(sp(2))-H bonds.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC4661000PMC
http://dx.doi.org/10.3762/bjoc.11.218DOI Listing

Publication Analysis

Top Keywords

bond arylations
8
step synthesis
8
efficient synthesis
4
synthesis π-conjugated
4
π-conjugated molecules
4
molecules incorporating
4
incorporating fluorinated
4
fluorinated phenylene
4
phenylene units
4
units palladium-catalyzed
4

Similar Publications

Palladium-catalyzed -arylation of (hetero)aryl chlorides with pyrroles and their analogues.

Org Biomol Chem

January 2025

School of Chemistry and Chemical Engineering, Guangxi Colleges and Universities Key Laboratory of Applied Chemistry Technology and Resource Development, Guangxi University, Nanning 530004, Guangxi, P. R. China.

We present a mild and efficient method for the arylation of N-H heteroarenes using a low-loading Pd/keYPhos catalyst (0.8 mol%). This approach employs inexpensive and structurally diverse aryl chlorides as electrophiles in reactions with indoles, pyrroles, and carbazole, enabling the construction of a wide range of -arylated products.

View Article and Find Full Text PDF

Palladium(II)-catalyzed C-H functionalization has attracted considerable attention as a pathway to late-stage modification of peptides. Herein, we report the Pd-catalyzed C(sp3)-H arylation of peptides directed by an amidoxime ether, which can be easily incorporated into peptides at any amide bond. Site- and stereoselective arylation of peptides has been achieved, including an unprecedented example of C-H arylation of an internal residue.

View Article and Find Full Text PDF

Intermediate Control: Unlocking Hitherto Unknown Reactivity and Selectivity in N-Conjugated Allenes and Alkynes.

Acc Chem Res

January 2025

Department of Chemistry and Chemistry Institution for Functional Materials, Pusan National University, Busan 46241, Republic of Korea.

ConspectusControlling selectivity through manipulation of reaction intermediates remains one of the most enduring challenges in organic chemistry, providing novel solutions for selective C-C π-bond functionalization. This approach, guided by activation principles, provides an effective method for selective functional group installation, enabling direct synthesis of organic molecules that are inaccessible through conventional pathways. In particular, the selective functionalization of N-conjugated allenes and alkynes has emerged as a promising research focus, driven by advances in controlling reactive intermediates and activation strategies.

View Article and Find Full Text PDF

A variety of α-arylated sulfoxonium ylides could be facilely synthesized in modest to high yields through α-arylation of sulfoxonium ylides with aryl fluorosulfates C-O bond functionalization under palladium catalysis. Reactions using readily available and bench-stable aryl fluorosulfates as effective and appealing arylating agents showed both good substrate scope and broad functionality tolerance. Important functional groups such as nitro, cyano, formyl, acetyl, methoxycarbonyl, trifluoromethoxy, fluoro, and chloro embedded in substrates remained intact during the course of the reaction, and could be subjected to downstream modification.

View Article and Find Full Text PDF

Chemoenzymatic C,C-Bond Forming Cascades by Cryptic Vanadium Haloperoxidase Catalyzed Bromination.

Org Lett

December 2024

Biomimetic Catalysis, Catalysis Research Center, TUM School of Natural Sciences, Technical University of Munich, Lichtenbergstrasse 4, 85748 Garching, Germany.

Inspired by natural cryptic halogenation in -bond formation, this study developed a synthetic approach combining biocatalytic bromination with transition-metal-catalyzed cross-coupling. Using the cyanobacterial VHPO, a robust and sustainable bromination-arylation cascade was created. Genetic modifications allowed enzyme immobilization, enhancing the compatibility between biocatalysis and chemocatalysis.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!