This paper reports the synthesis of a series of piperidones 1-8 by the Mannich reaction and analysis of their structures and conformations in solution by NMR and mass spectrometry. The six-membered rings in 2,4,6,8-tetraphenyl-3,7-diazabicyclo[3.3.1]nonan-9-ones, compounds 1 and 2, adopt a chair-boat conformation, while those in 2,4-diphenyl-3-azabicyclo[3.3.1]nonan-9-ones, compounds 3-8, adopt a chair-chair conformation because of stereoelectronic effects. These stereoelectronic effects were analyzed by the (1) J C-H coupling constants, which were measured in the (13)C satellites of the (1)H NMR spectra obtained with the hetero-dqf pulse sequence. In the solid state, these stereoelectronic effects were investigated by measurement of X-ray diffraction data, the molecular geometry (torsional bond angles and bond distances), and inter- and intramolecular interactions, and by natural bond orbital analysis, which was performed using density functional theory at the ωB97XD/6311++G(d,p) level. We found that one of the main factors influencing the conformational stability of 3-8 is the interaction between the lone-pair electrons of nitrogen and the antibonding sigma orbital of C(7)-Heq (nN→σ*C-H(7)eq), a type of hyperconjugative interaction.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC4660988 | PMC |
http://dx.doi.org/10.3762/bjoc.11.213 | DOI Listing |
Molecules
January 2025
Department of Chemistry, Hunter College, The City University of New York, 695 Park Ave., New York, NY 10065, USA.
Using methods of DFT, we investigated the effect of electron withdrawing and electron donating groups on the relative stability of tentative glycosyl donor reaction intermediates. The calculation shows that by changing the stereoelectronic properties of the protecting group, we can influence the stability of the dioxolenium type of intermediates by up to 10 kcal mol, and that by increasing nucleophillicity of the 4--Bz group, the dioxolenium intermediate becomes more stable than a triflate-donor pair. We exploited this mechanism to design galactosyl donors with custom protecting groups on O2 and O4, and investigated the outcome of the reaction with cyclohexanol.
View Article and Find Full Text PDFChem Commun (Camb)
January 2025
Institute of Organic Chemistry, Faculty of Chemistry, University of Vienna, Währinger Strasse 38, 1090, Vienna, Austria.
This paper discusses hyperconjugative stereoelectronic effects in borazines. A series of alkyl-substituted borazines were synthesized and analysed by NMR spectroscopy and X-ray diffraction. Supported by NBO analyses, the significant decreases in coupling constant for the CH groups adjacent to the boron atoms are consistent with the presence of and interactions.
View Article and Find Full Text PDFChem Sci
December 2024
State Key Laboratory and Institute of Elemento-Organic Chemistry, College of Chemistry, Nankai University Tianjin 300071 China
1,2--Aryl furanosides are prevalent in nature and exhibit significant biological activities. The 1,2- configuration is less favorable in terms of stereoelectronic and steric effects, making the synthesis of this type of skeleton highly challenging. Traditional methods for the synthesis of 1,2--aryl furanosides usually require complicated protection manipulations, resulting in lengthy synthetic routes and low overall efficiency.
View Article and Find Full Text PDFJ Am Chem Soc
December 2024
Department of Chemistry and Biomolecular Sciences, University of Ottawa, Ottawa, Ontario K1N 6N5, Canada.
Discrete molecular organometallic europium(II) complexes are promising functional materials due to their ability to behave as highly sensitive band-shift luminescence thermometers. Furthering our understanding of the design principles salient to the emission behavior of such systems is important for developing them in this emerging application. To this end, a series of pseudo--symmetric organometallic europium(II) complexes bearing systematically varying ligand sets were synthesized and characterized to probe the influence of subtle structural modification on their optical properties.
View Article and Find Full Text PDFBiochemistry
December 2024
Department of Chemistry, Indian Institute of Technology Kharagpur, Kharagpur 721302, West Bengal, India.
Human iodotyrosine deiodinase (hIYD) catalyzes the reductive deiodination of iodotyrosine using a flavin mononucleotide cofactor to maintain the iodine concentration in the body. Mutations in the hIYD gene are linked to human hypothyroidism, emphasizing its role in thyroid function regulation. The present work employs microsecond-scale molecular dynamics simulations and quantum chemical calculations to elucidate the conformational dynamics and reactivity in the active site at various stages of hIYD enzymatic cycle.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!