Background: Corpus callosum malformation (CCM) is the most frequent brain malformation observed at birth. Because CCM is a highly heterogeneous condition, the prognosis of fetuses diagnosed prenatally remains uncertain, making prenatal counseling difficult.
Methods And Results: We evaluated retrospectively a total of 138 fetuses, 117 with CCM observed on prenatal imaging examination, and 21 after postmortem autopsy. On ultrasound and/or magnetic resonance imaging, CCM was either isolated (N = 40) or associated with other neurological (N = 57) or extra cerebral findings (N = 21/20, respectively).
Results: Most fetuses (N = 132) remained without a diagnosis at the time of pregnancy termination. This emphasizes the need to establish a neuropathological classification and to perform a genomic screening using comparative genomic hybridization. A neuropathological examination performed on 138 cases revealed a spectrum of CCMs, classified as follows: agenesis of corpus callosum (55), CC hypoplasia (30), CC dysmorphism (24), and CCM associated with a malformation of cortical development (29). Of interest, after fetopathological examination, only 16/40 malformations were classified as isolated, highlighting the importance of the autopsy following termination of pregnancy. Among the 138 cases, the underlying etiology was found in 46 cases: diabetes (one case), cytomegalovirus infection (one case), 23 chromosome abnormalities, and 21 mendelian conditions.
Conclusion: In our series of 138 cases of CCM, prenatal and postmortem examinations identified a variety of genetic causes. However, no diagnosis could be established in 67% of cases. The classification based on the underlying neurodevelopmental defects paves the way for further genetic studies and genotype-phenotype correlations.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1002/bdra.23472 | DOI Listing |
Neurogenetics
January 2025
Department of Pediatrics, Erciyes University, Faculty of Medicine, Kayseri, Turkey.
The cytoskeleton, composed of microtubules, intermediate filaments and actin filaments is vital for various cellular functions, particularly within the nervous system, where microtubules play a key role in intracellular transport, cell morphology, and synaptic plasticity. Tubulin-specific chaperones, including tubulin folding cofactors (TBCA, TBCB, TBCC, TBCD, TBCE), assist in the proper formation of α/β-tubulin heterodimers, essential for microtubule stability. Pathogenic variants in these chaperone-encoding genes, especially TBCD, have been linked to Progressive Encephalopathy with Brain Atrophy and Thin Corpus Callosum (PEBAT, OMIM #604,649), a severe neurodevelopmental disorder.
View Article and Find Full Text PDFJ Mol Neurosci
January 2025
Department of Neurology, State Key Laboratory of Complex Severe and Rare Diseases, Peking Union Medical College Hospital, Chinese Academy of Medical Science/Peking Union Medical College, Beijing, 100730, China.
CSF1R-related leukoencephalopathy (CSF1R-L) and AARS2-related leukoencephalopathy (AARS2-L) were two disease entities sharing similar phenotype and even pathological changes. Although clinically, radiologically, and pathologically similar, they were caused by mutation of two different genes. As the rarity of the two diseases, the differential diagnosis of them was difficult.
View Article and Find Full Text PDFBrain Sci
December 2024
College of Electronic Engineering, Chengdu University of Information Technology, Chengdu 610225, China.
Background: The spontaneous fluctuations in functional magnetic resonance imaging (fMRI) signals of the brain's gray matter (GM) have been interpreted as representations of neural activity variations. In previous research, white matter (WM) signals, often considered noise, have also been demonstrated to reflect characteristics of functional activity and interactions among different brain regions. Recently, functional gradients have gained significant attention due to their success in characterizing the functional organization of the whole brain.
View Article and Find Full Text PDFBrain Commun
January 2025
Queensland Aphasia Research Centre, University of Queensland, Brisbane 4029, Australia.
The integrity of the frontal segment of the corpus callosum, forceps minor, is particularly susceptible to age-related degradation and has been associated with cognitive outcomes in both healthy and pathological ageing. The predictive relevance of forceps minor integrity in relation to cognitive outcomes following a stroke remains unexplored. Our goal was to evaluate whether the heterogeneity of forceps minor integrity, assessed early after stroke onset (2-6 weeks), contributes to explaining variance in longitudinal outcomes in post-stroke aphasia.
View Article and Find Full Text PDFiScience
January 2025
Neuroprotection Research Laboratories, Departments of Radiology and Neurology, Massachusetts General Hospital and Harvard Medical School, Charlestown, MA 02129, USA.
The corpus callosum, a major white matter region central to cognitive function, is vulnerable to aging. Using zeitgeber time (ZT) aligned with environmental light/dark cycles, we investigated temporal gene expression patterns in the corpus callosum of young (5-month-old) and aged (24-month-old) mice using RNA-seq. Comparative analysis revealed more differentially expressed genes across ZT pairs in young mice than aged mice.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!