Prestimulus default mode activity influences depth of processing and recognition in an emotional memory task.

Hum Brain Mapp

Department of Psychiatric Neurophysiology, University Hospital of Psychiatry, University of Bern, Bolligenstrasse 111, Bern, 3000, Switzerland.

Published: March 2016

Low self-referential thoughts are associated with better concentration, which leads to deeper encoding and increases learning and subsequent retrieval. There is evidence that being engaged in externally rather than internally focused tasks is related to low neural activity in the default mode network (DMN) promoting open mind and the deep elaboration of new information. Thus, reduced DMN activity should lead to enhanced concentration, comprehensive stimulus evaluation including emotional categorization, deeper stimulus processing, and better long-term retention over one whole week. In this fMRI study, we investigated brain activation preceding and during incidental encoding of emotional pictures and on subsequent recognition performance. During fMRI, 24 subjects were exposed to 80 pictures of different emotional valence and subsequently asked to complete an online recognition task one week later. Results indicate that neural activity within the medial temporal lobes during encoding predicts subsequent memory performance. Moreover, a low activity of the default mode network preceding incidental encoding leads to slightly better recognition performance independent of the emotional perception of a picture. The findings indicate that the suppression of internally-oriented thoughts leads to a more comprehensive and thorough evaluation of a stimulus and its emotional valence. Reduced activation of the DMN prior to stimulus onset is associated with deeper encoding and enhanced consolidation and retrieval performance even one week later. Even small prestimulus lapses of attention influence consolidation and subsequent recognition performance.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC6867427PMC
http://dx.doi.org/10.1002/hbm.23076DOI Listing

Publication Analysis

Top Keywords

default mode
12
recognition performance
12
deeper encoding
8
neural activity
8
activity default
8
mode network
8
preceding incidental
8
incidental encoding
8
subsequent recognition
8
emotional valence
8

Similar Publications

Background: Neuroimaging studies have shown that hypothalamic/thalamic nuclei and other distant brain regions belonging to complex cerebral networks are involved in cluster headache (CH). However, the exact relationship between these areas, which may be dependent or independent, remains to be understood. We investigated differences in resting-state functional connectivity (FC) between brain networks and its relationship with the microstructure of the hypothalamus and thalamus in patients with episodic CH outside attacks and healthy controls (HCs).

View Article and Find Full Text PDF

Reconfigured metabolism brain network in asymptomatic Creutzfeldt-Jakob disease.

Neurobiol Dis

January 2025

Department of Neurology, Xuanwu Hospital, Capital Medical University, Beijing, China; National Clinical Research Center for Geriatric Disorders, Xuanwu Hospital, Capital Medical University, Beijing, China. Electronic address:

Background: Investigating brain metabolic networks is crucial for understanding the pathogenesis and functional alterations in Creutzfeldt-Jakob disease (CJD). However, studies on presymptomatic individuals remain limited. This study aimed to examine metabolic network topology reconfiguration in asymptomatic carriers of the PRNP G114V mutation.

View Article and Find Full Text PDF

Background: Trauma-focused psychotherapy is treatment of choice for post-traumatic stress disorder (PTSD). However, about half of patients do not respond. Recently, there is increased interest in brain criticality, which assesses the phase transition between order and disorder in brain activity.

View Article and Find Full Text PDF

Dynamic switching between brain networks predicts creative ability.

Commun Biol

January 2025

Department of Psychology, Pennsylvania State University, University Park, Pennsylvania, USA.

Creativity is hypothesized to arise from a mental state which balances spontaneous thought and cognitive control, corresponding to functional connectivity between the brain's Default Mode (DMN) and Executive Control (ECN) Networks. Here, we conduct a large-scale, multi-center examination of this hypothesis. Employing a meta-analytic network neuroscience approach, we analyze resting-state fMRI and creative task performance across 10 independent samples from Austria, Canada, China, Japan, and the United States (N = 2433)-constituting the largest and most ethnically diverse creativity neuroscience study to date.

View Article and Find Full Text PDF

Polygenic risk for depression and resting-state functional connectivity of subgenual anterior cingulate cortex in young adults.

J Psychiatry Neurosci

January 2025

From the Department of Psychiatry, Yale University School of Medicine, New Haven, Conn., USA (Chen, Luo, Ide, C.-S. Li); Yale University, New Haven, Conn., USA (H.-T. Li); the Department of Biomedical Engineering, College of Chemistry and Life Science, Beijing University of Technology, Beijing, China (G. Li); the Beijing International Science and Technology Cooperation Base for Intelligent Physiological Measurement and Clinical Transformation, Beijing, China (G. Li); the Department of Neuroscience, Yale University School of Medicine, New Haven, Conn., USA (C.-S Li); the Interdepartment Neuroscience Program, Yale University, New Haven, Conn., USA (C.-S. Li); the Wu Tsai Institute, Yale University, New Haven, Conn., USA (C.-S. Li).

Background: Genetic variants may confer risk for depression by modulating brain structure and function; evidence has underscored the key role of the subgenual anterior cingulate cortex (sgACC) in depression. We sought to examine how the resting-state functional connectivity (rsFC) of the sgACC was associated with polygenic risk for depression in a subclinical population.

Methods: Following published protocols, we computed seed-based whole-brain sgACC rsFC and calculated polygenic risk scores (PRS) using data from healthy young adults from the Human Connectome Project.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!