Functional decoupling between flowers and leaves in the Ameroglossum pernambucense complex can facilitate local adaptation across a pollinator and climatic heterogeneous landscape.

J Evol Biol

Programa de Pós-Graduação em Biologia Vegetal, Universidade Federal de Pernambuco, Recife, PE, Brazil.

Published: March 2016

Decoupling between floral and leaf traits is expected in plants with specialized pollination systems to assure a precise flower-pollinator fit, irrespective of leaf variation associated with environmental heterogeneity (functional modularity). Nonetheless, developmental interactions among floral traits also decouple flowers from leaves regardless of selection pressures (developmental modularity). We tested functional modularity in the hummingbird-pollinated flowers of the Ameroglossum pernambucense complex while controlling for developmental modularity. Using two functional traits responsible for flower-pollinator fit [floral tube length (TL) and anther-nectary distance (AN)], one floral trait not linked to pollination [sepal length (SL), control for developmental modularity] and one leaf trait [leaf length (LL)], we found evidence of flower functional modularity. Covariation between TL and AN was ca. two-fold higher than the covariation of either of these traits with sepal and leaf lengths, and variations in TL and AN, important for a precise flower-pollinator fit, were smaller than SL and LL variations. Furthermore, we show that previously reported among-population variation of flowers associated with local pollinator phenotypes was independent from SL and LL variations. These results suggest that TL and AN are functionally linked to fit pollinators and sufficiently decoupled from developmentally related floral traits (SL) and vegetative traits (LL). These results support previous evidences of population differentiation due to local adaptation in the A. pernambucense complex and shed light on the role of flower-leaf decoupling for local adaptation in species distributed across biotic and abiotic heterogeneous landscapes.

Download full-text PDF

Source
http://dx.doi.org/10.1111/jeb.12802DOI Listing

Publication Analysis

Top Keywords

local adaptation
12
flower-pollinator fit
12
functional modularity
12
flowers leaves
8
ameroglossum pernambucense
8
pernambucense complex
8
precise flower-pollinator
8
floral traits
8
developmental modularity
8
traits
6

Similar Publications

When introduced to multiple distinct ranges, invasive species provide a compelling natural experiment for understanding the repeatability of adaptation. Ambrosia artemisiifolia is an invasive, noxious weed, and chief cause of hay fever. Leveraging over 400 whole-genome sequences spanning the native-range in North America and 2 invasions in Europe and Australia, we inferred demographically distinct invasion histories on each continent.

View Article and Find Full Text PDF

In contemporary globalised societies, global awareness and identification, as well as local and regional identifications (other than national identity), may all become increasingly important for guiding people's sense of belonging and purpose and in turn their self-concept. As the world has become increasingly interconnected, people increasingly identify with various cultures and worldviews within both local and global contexts. Attempts to reconcile these multiple cultural identities can lead to a sense of cultural dissonance as people struggle to integrate these identities into a coherent sense of self.

View Article and Find Full Text PDF

The regulation of cellular metabolism is crucial for cell survival, with Sch9 in serving a key role as a substrate of TORC1. Sch9 localizes to the vacuolar membrane through binding to PI(3,5)P, which is necessary for TORC1-dependent phosphorylation. This study demonstrates that cytosolic pH regulates Sch9 localization.

View Article and Find Full Text PDF

Global regulators enable bacterial adaptation to a phenotypic trade-off.

iScience

January 2025

Laboratoire de Biochimie, UMR CNRS-ESPCI 8231 Chimie Biologie Innovation, PSL Research University, ESPCI Paris, 10 Rue Vauquelin, 75005 Paris, France.

Cellular fitness depends on multiple phenotypes that must be balanced during evolutionary adaptation. For instance, coordinating growth and motility is critical for microbial colonization and cancer invasiveness. In bacteria, these phenotypes are controlled by local regulators that target single operons, as well as by global regulators that impact hundreds of genes.

View Article and Find Full Text PDF

Soil data from the Barbastro-Balaguer gypsum belt, NE Spain.

Data Brief

February 2025

Estación Experimental de Aula Dei, EEAD - CSIC, Ave. Montañana 1005, 50059 Zaragoza, Spain.

The dataset [1] hosts pedological info and images of the lands -locally known as - of the outcropping gypsiferous core of the Barbastro-Balaguer anticline (Fig. 1). It stands out in the landscape for the linear reliefs due to outcrops of dipping strata with differential resistance to erosion, and also because of its whitish color (Fig.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!