Michael addition reactions between biological thiols and endocyclic olefinic maleimides are extensively used for site-specific bioconjugation. The resulting thio-succinimidyl linkages, however, lack stability because of their susceptibility to thiol exchange. Reported herein is that in contrast to their endocyclic counterparts, exocyclic olefinic maleimides form highly stable thio-Michael adducts which resist thiol exchange at physiological conditions. A high-yielding approach for synthesizing a variety of exocyclic olefinic maleimides, by 4-nitrophenol-catalyzed solvent-free Wittig reactions, is reported. Mechanistic studies reveal that the catalyst facilitates the formation of the Wittig ylide intermediate through sequential proton donation and abstraction. Overall, this report details an improved thiol bioconjugation approach, a facile method for synthesizing exocyclic olefinic maleimides, and demonstrates that phenolic compounds can catalyze ylide formation.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1002/anie.201508118 | DOI Listing |
J Org Chem
September 2024
Anhui Province Key Laboratory of Chemistry for Inorganic/Organic Hybrid Functionalized Materials and Key Laboratory of Functional Inorganic Materials of Anhui Province, College of Chemistry & Chemical Engineering, Anhui University, Hefei, Anhui 230601, People's Republic of China.
The utilization of photogenerated carbene species to perform N-H insertion reactions has attracted considerable attention in the past few years. In this Article, we disclose a visible-light-promoted N-H insertion of 3-aminomethylated maleimides with aryl diazoacetates under sole blue LED irradiation. Continuous flow reactor technology was exploited to improve the reaction efficiency.
View Article and Find Full Text PDFBiomacromolecules
September 2024
EMT Research Center, Institut National de la Recherche Scientifique (INRS), Varennes J3X 1P7, Canada.
Chemical linkages that respond to biological stimuli are important for many pharmaceutical and biotechnological applications, making it relevant to explore new variants with different responsivity profiles. This work explores the responsiveness of a TAT peptide-based sulfonium vinyl sulfide probe that responds to nucleophilic thiols, radical thiol species (RTS), and reactive nitrogen species (RNS). Under model conditions, response to nucleophilic thiols was very slow (hours/days), though fast with down to molar equivalents of either RTS or RNS (minutes).
View Article and Find Full Text PDFCyclopentadienyliron(ii) dicarbonyl complexes capable of coordinating to and enhancing the acidity of a range of unsaturated substrates have emerged as a new class of base-metal derived catalysts for C-H functionalization. In this manuscript, the iron-catalyzed C-H functionalization of allylic C(sp)-H bonds using nitrogen containing α,β-unsaturated carbonyl compounds as coupling partners is reported. Employing a cationic cyclopentadienyliron dicarbonyl complex, this redox neutral process converts simple alkenes into allylic anion equivalents for 1,4-addition into maleimides, acyclic α,β-unsaturated imides, and vinylogous amides.
View Article and Find Full Text PDFJ Inorg Biochem
September 2024
Institute of Inorganic Chemistry, RWTH Aachen University, Landoltweg 1, 52074 Aachen, Germany. Electronic address:
The effect of halide substitution in Grubbs-Hoveyda II catalysts (GHII catalysts) embedded in the engineered β-barrel protein nitrobindin (NB4exp) on metathesis activity in aqueous media was studied. Maleimide tagged dibromido and diiodido derivates of the GHII catalyst were synthesized and covalently conjugated to NB4exp. The biohybrid catalysts were characterized spectroscopically confirming the structural integrity.
View Article and Find Full Text PDFACS Appl Bio Mater
March 2024
Department of Polymer Materials and Engineering, School of Physics and Materials Science, Nanchang University, Nanchang 330031, China.
The development of nanocarriers to prolong the residence time and enhance the permeability of chemotherapeutic drugs on bladder mucosa is important in the postsurgery treatment of superficial bladder cancers (BCs). Here, the mucoadhesive HA-SH/PF127 nanogels composed of a temperature-sensitive Pluronic F127 (PF127) core and thiolated hyaluronic acid (HA-SH) shell were prepared by the emulsification/solvent evaporation method. The nanogels were constructed through the thiol-maleimide click reaction in the HA-SH aqueous side of the oil-water interface and self-oxidized cross-linking thiols between HA-SH.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!