The issue of oil/water separation has recently become a global concern due to the frequency of oil spills and the increase in industrial waste water. Thus, membrane-based materials with unique wettability are desired to separate both of these from a mixture. Nevertheless, the fabrication of energy efficient and stable membranes appropriate for the separation process remains challenging. Herein, synergistic superhydrophilic-underwater superoleophobic inorganic membranes were inventively created by a maneuverable galvanic displacement reaction on copper mesh. The "water-loving" meshes were then used to study gravity driven oil-water separation, where a separation efficiency (the ratio of the amount of oil remaining above the membrane after the separation process to the amount of oil in original mixture) of up to 97% was achieved for various oil-water mixtures, and furthermore the wetting properties and separating performances were maintained without further attenuation after exposure to corrosive environments. Notably, the "repelling-oil" mode can switch to a superhydrophobic mode which acts as a supplementary "oil slick absorbing" material floating above the water surface and has potential in tackling oil slick clean-up issues, in comparison to the former mode which possesses better "separation ability". In addition, the original "repelling-oil" state can be reinstated with ease. The novel method involving a "one-cyclic transformation course" abandons extra chemical addition. The facile and green route presented here acts as an excellent test for the fabrication of a dual-functioning membrane with potential use in efficient oil-water separation, even in harsh environments, and off-shore oil spill cleanup.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1039/c5cp06305a | DOI Listing |
J Hazard Mater
November 2024
College of Chemistry and Chemical Engineering, Inner Mongolia University, Hohhot 010021, PR China. Electronic address:
Inspired by the multi-level structure of grass clumps in nature, a novel filter with plexiform-structured hydrogel interface was constructed using sepiolite-derived silica nanofiber (SiNF) as the supporter and crosslinked polyvinyl alcohol (cl-PVA) hydrogel as the coating. Experimental test, DFT and MD calculations have confirmed that the addition of SiNF can not only enhance oil-water separation efficiency, but also improve the stability of hydrogel coating. The hydrogel interface with excellent stability and superhydrophilic/underwater superoleophobicity can be manufactured on a large copper mesh (1 m × 1.
View Article and Find Full Text PDFInt J Biol Macromol
December 2024
School of Environmental Science and Engineering, Changzhou University, Changzhou 213164, PR China; Jiangsu Petrochemical Safety and Environmental Protection Engineering Research Center, Changzhou 213164, PR China. Electronic address:
The development of superwetting membranes is a promising approach for separating emulsified oily wastewater. However, challenges such as low flux without external pressure and membrane fouling have hindered membrane performance. Herein, we fabricated a novel nanofibrous membrane by grafting Co-doped Zr-UiO-66-NH (UiO(Zr/Co)) nanoparticles onto carboxylated cellulose nanocrystals (CCNC)-polyacrylonitrile (PAN) mixed matrix electrospinning membrane via chemical bonds through EDC/NHS reaction.
View Article and Find Full Text PDFLangmuir
October 2024
College of Chemistry and Chemical Engineering, Northeast Petroleum University, Daqing 163318, China.
Nanoscale
September 2024
School of Mechanical Engineering and Automation, Institute of Metal Rubber & Vibration Noise, Fuzhou University, Fuzhou 350116, People's Republic of China.
ACS Appl Mater Interfaces
July 2024
Ministry of Education Key Laboratory for the Green Preparation and Application of Functional Materials, Hubei University, Wuhan 430062, People's Republic of China.
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!