Membrane fusion results in the transport and mixing of (bio)molecules across otherwise impermeable barriers. In this communication, we describe the temporal control of targeted liposome-liposome membrane fusion and contents mixing using light as an external trigger. Our method relies on steric shielding and rapid, photoinduced deshielding of complementary fusogenic peptides tethered to opposing liposomal membranes. In an analogous approach, we were also able to demonstrate precise spatiotemporal control of liposome accumulation at cellular membranes in vitro.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1002/anie.201509673 | DOI Listing |
Front Biosci (Landmark Ed)
January 2025
Department of Cardiovascular Medicine, Binzhou Medical University Hospital, 256603 Binzhou, Shandong, China.
Background: Cellular vacuolization is a commonly observed phenomenon under physiological and pathological conditions. However, the mechanisms underlying vacuole formation remain largely unresolved.
Methods: LysoTracker Deep Red probes and Enhanced Green Fluorescent Protein-tagged light chain 3B (LC3B) plasmids were employed to differentiate the types of massive vacuoles.
Int J Mol Sci
January 2025
Botulinum Research Center, Institute of Advanced Sciences, Dartmouth, MA 02747, USA.
Botulinum toxin (BoNT), the most potent substance known to humans, likely evolved not to kill but to serve other biological purposes. While its use in cosmetic applications is well known, its medical utility has become increasingly significant due to the intricacies of its structure and function. The toxin's structural complexity enables it to target specific cellular processes with remarkable precision, making it an invaluable tool in both basic and applied biomedical research.
View Article and Find Full Text PDFInt J Mol Sci
January 2025
Research Institute for Systems Biology and Medicine (RISBM), Nauchnyi proezd 18, 117246 Moscow, Russia.
SARS-CoV-2 viral entry requires membrane fusion, which is facilitated by the fusion peptides within its spike protein. These predominantly hydrophobic peptides insert into target membranes; however, their precise mechanistic role in membrane fusion remains incompletely understood. Here, we investigate how FP1 (SFIEDLLFNKVTLADAGFIK), the N-terminal fusion peptide, modulates membrane stability and barrier function across various model membrane systems.
View Article and Find Full Text PDFBiomolecules
January 2025
Department of Immunobiology and Biomedicine, Sirius University of Science and Technology, 354349 Sirius, Krasnodarsky Krai, Russia.
The study of pathogenic viruses has always posed significant biosafety challenges. In particular, the study of highly pathogenic viruses requires methods with low biological risk but relatively high sensitivity and convenience in detection. In recent years, pseudoviruses, which consist of a backbone of one virus and envelope proteins of another virus, have become one of the most widely used tools for exploring the mechanisms of viruses binding to cells, membrane fusion and viral entry, as well as for screening the libraries of antiviral substances, evaluating the potential of neutralizing monoclonal antibodies, developing neutralization tests, and therapeutic platforms.
View Article and Find Full Text PDFPediatr Dev Pathol
January 2025
Département d'Anatomie et Cytologie pathologiques, Hôpital Menzel Bourguiba, Menzel Bourguiba, Tunisia.
The patients with Arthrogryposis-Renal dysfunction-Cholestasis (ARC) syndrome have genetic susceptibility to the opportunistic infections due to the involvement of VPS33B (vacuolar protein sorting 33 homolog B) in phagolysosome fusion in macrophages. Detailed pathologic studies in ARC patients are missing in literature due to the lack of autopsy. We described the first autopsy case of ARC syndrome in a 2-month-old male infant.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!