Background: Overall survival of metastatic colorectal cancer (mCRC) patients has been improved with the addition of targeted therapy such as anti-epithelial growth factor receptor monoclonal antibodies (anti-EGFR mAbs) to standard chemotherapy. Retrospective studies and randomized trials showed that the presence of RAS mutations was linked to the absence of clinical response to anti-EGFR mAbs. Patients harboring KRAS and NRAS mutations on exons 2, 3 or 4 have little or no benefit from anti-EGFR therapies. Polymerase chain reaction (PCR)-based assays are routinely used to assess KRAS and NRAS status, whereas deep sequencing with next generation sequencing (NGS) currently represents an alternative method.

Objective: The objective of our study was to identify KRAS and NRAS non-hotspot mutations using NGS of mCRC tumor samples.

Method: DNA was extracted from 188 consecutive formalin-fixed paraffin embedded samples of histologically proven colorectal cancer tumor tissue from patients with mCRC. Following amplification, DNA was sequenced by ultra-deep pyrosequencing. Non-hotspot mutations identified by NGS (frequency of mutated allele range [1.8-70.6 %]) were confirmed by Sanger direct-sequencing when possible.

Results: NGS procedure was applicable in 94 % of the cases and detected mutations in 62 % of the samples. Nine uncommon mutational profiles were found with a frequency of mutated allele  > 1 %. Silent mutations were found in 3.6 % of the samples. Mutations at or near functional domains of RAS proteins, other than defined hotspots, were found in 3.6 %. NGS proved to be accurate, sensitive and suitable for routine RAS genotyping.

Conclusion: Clinical responses to anti-EGFR mAbs are potentially impaired in the presence of these uncommon RAS mutations.

Download full-text PDF

Source
http://dx.doi.org/10.1007/s11523-015-0404-7DOI Listing

Publication Analysis

Top Keywords

ras mutations
12
colorectal cancer
12
anti-egfr mabs
12
kras nras
12
mutations
9
metastatic colorectal
8
routine ras
8
generation sequencing
8
non-hotspot mutations
8
frequency mutated
8

Similar Publications

Background And Aims: Oncogenic KRAS mutations are present in approximately 90% of pancreatic ductal adenocarcinoma (PDAC). However, Kras mutation alone is insufficient to transform precancerous cells into metastatic PDAC. This study investigates how KRAS-mutated epithelial cells acquire the capacity to escape senescence or even immune clearance, thereby progressing to advanced PDAC.

View Article and Find Full Text PDF

KEAP1 mutations as key crucial prognostic biomarkers for resistance to KRAS-G12C inhibitors.

J Transl Med

January 2025

Department of Medical Oncology, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, 100021, China.

Background: KRAS-G12C inhibitors mark a notable advancement in targeted cancer therapies, yet identifying predictive biomarkers for treatment efficacy and resistance remains essential for optimizing clinical outcomes.

Methods: This systematic meta-analysis synthesized studies available through September 2024 across PubMed, Cochrane Library, SpringerLink, and Embase. Using CRISPR/Cas9 technology, this study generated cells with KEAP1 and STK11 knockouts, and utilized lentiviral vectors to overexpress PD-L1.

View Article and Find Full Text PDF

Colorectal carcinoma brain metastases (n=60) were studied using next-generation sequencing and immunohistochemistry. RAS and BRAF mutations were detected in 58.2% and 7.

View Article and Find Full Text PDF

Advancements in gene therapies targeting mutant KRAS in cancers.

Cancer Metastasis Rev

January 2025

School of Biomedical Engineering, University of Technology Sydney, Ultimo, NSW, 2007, Australia.

Mutations in the KRAS gene are well-known tumourigenic drivers of colorectal, pancreatic and lung cancers. Mechanistically, these mutations promote uncontrolled cell proliferation and alter the tumour microenvironment during early carcinoma stages. Given their critical carcinogenic functions, significant progress has been made in developing KRAS inhibitors for cancer treatment.

View Article and Find Full Text PDF

Cancers with activating mutations of KRAS show a high prevalence but remain intractable, requiring innovative strategies to overcome the poor targetability of KRAS. Here, we report that KRAS expression is post-translationally up-regulated through deubiquitination when the scaffolding function of NDRG3 (N-Myc downstream-regulated gene 3) promotes specific interaction between KRAS and a deubiquitinating enzyme, USP9X. In KRAS-mutant cancer cells KRAS protein expression, downstream signaling, and cell growth are highly dependent on NDRG3.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!