Eukaryotic cells contain membranes exhibiting different levels of lipid order mostly related to their relative amount of sterol-rich domains, thought to mediate temporal and spatial organization of cellular processes. We previously provided evidence in Arabidopsis thaliana that sterols are crucial for execution of cytokinesis, the last stage of cell division. Recently, we used di-4-ANEPPDHQ, a fluorescent probe sensitive to order of lipid phases, to quantify the level of membrane order of the cell plate, the membrane structure separating daughter cells during somatic cytokinesis of higher plant cells. By employing quantitative, ratiometric fluorescence microscopy for mapping localized lipid order levels, we revealed that the Arabidopsis cell plate represents a high-lipid-order domain of the plasma membrane. Here, we describe step-by-step protocols and troubleshooting for ratiometric live imaging procedures employing the di-4-ANEPPDHQ fluorescent probe for quantification of membrane lipid order during plant cell division in suspension cell cultures and roots of Arabidopsis thaliana.

Download full-text PDF

Source
http://dx.doi.org/10.1007/978-1-4939-3142-2_17DOI Listing

Publication Analysis

Top Keywords

lipid order
16
ratiometric fluorescence
8
live imaging
8
membrane lipid
8
arabidopsis thaliana
8
cell division
8
di-4-aneppdhq fluorescent
8
fluorescent probe
8
cell plate
8
lipid
6

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!