Capture and Isolation of Circulating Melanoma Cells Using Photoacoustic Flowmetry.

Methods Mol Biol

Biomedical Engineering, Duquesne University, Pittsburgh, PA, USA.

Published: December 2015

Circulating tumor cells (CTCs) are those cells that separate from a solid tumor and spread through the blood or lymphatic systems. While there are many open questions concerning the biology of CTCs, there is mounting evidence that some of these cells go on to create secondary tumors in distant organs, thus enabling metastatic disease. Detection of CTCs may have clinical impact by providing prognostic information. Furthermore, molecular and genetic analysis of CTCs may enable cancer biologists to answer questions about the metastatic process, such as whether these cells undergo epithelial-mesenchymal transition. Using a photoacoustic flowmeter, in which we induce ultrasonic responses from circulating melanoma cells (CMCs), we identify, capture, and isolate these cells for further analysis.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC5323359PMC
http://dx.doi.org/10.1007/7651_2015_306DOI Listing

Publication Analysis

Top Keywords

circulating melanoma
8
melanoma cells
8
cells
7
capture isolation
4
isolation circulating
4
cells photoacoustic
4
photoacoustic flowmetry
4
flowmetry circulating
4
circulating tumor
4
tumor cells
4

Similar Publications

Background: Immune checkpoint inhibitors (ICIs), including those targeting PD-1, are currently used in a wide range of tumors, but only 20-40% of patients achieve clinical benefit. The objective of our study was to find predictive peripheral blood-based biomarkers for ICI treatment.

Methods: In 41 patients with advanced malignant melanoma (MM) and NSCLC treated with PD-1 inhibitors, we analyzed peripheral blood-based immune subsets by flow cytometry before treatment initialization and the second therapy dose.

View Article and Find Full Text PDF

FA-PEG Modified ZIF(Mn) Nanoparticles Loaded with Baicalin for Imaging-Guided Treatment of Melanoma in Mice.

Int J Nanomedicine

December 2024

Department of Dermatology, Affiliated Hospital of Shandong Second Medical University, School of Clinical Medicine, Shandong Second Medical University, Weifang, 261031, People's Republic of China.

Background: Melanoma is an aggressive skin tumor with limited therapeutic options due to rapid proliferation, early metastasis, and poor prognosis. Baicalin (BA), a natural flavonoid, shows promise in inducing ferroptosis and apoptosis but faces challenges of poor solubility and bioavailability. To address these issues, we developed a multifunctional drug delivery system: manganese-doped ZIF-8 nanoparticles (ZIF(Mn)) loaded with BA and modified with folic acid (FA) and polyethylene glycol (PEG).

View Article and Find Full Text PDF

The aim of study was to prepared and evaluated rutin-loaded solid-lipid-nanoparticles (Ru-SLNs) gel for treatment of melanoma cells. SLNs were prepared by ultrasonication method through optimisation and evaluated their mean-diameter, PDI, zeta-potential, morphology, entrapment-efficiency, drug-loading, interaction by FTIR, in vitro skin permeation, stability, antioxidant/MTT assay and fluorescence microscopic. Further developed Ru-SLNs was incorporated into gel and characterised their physicochemical properties, drug contents, in vitro diffusion, ex vivo permeation and retention studies in human cadaver skin.

View Article and Find Full Text PDF

Prognostic Biomarkers in Evolving Melanoma Immunotherapy.

Am J Clin Dermatol

December 2024

Medical Faculty Heidelberg, Department of Dermatology and National Center for Tumor Diseases (NCT), Heidelberg University, NCT Heidelberg, a partnership between DKFZ and University Hospital Heidelberg, Heidelberg, Germany.

Melanoma, a highly aggressive form of skin cancer, has seen significant advancements in treatment through the introduction of immunotherapy. However, the variability in patient responses underscores the need for reliable biomarkers to guide treatment decisions. This article reviews key biomarkers in melanoma immunotherapy, such as PD-L1 expression, tumor mutational burden (TMB), and gene expression profiles (GEPs).

View Article and Find Full Text PDF

The immune checkpoint inhibitor ipilimumab provides long term survival in some metastatic melanoma patients, but the majority has no benefit, and may experience serious side effects. Here, we investigated the dynamics of plasma cytokine concentrations and their potential utility for predicting treatment response, adverse events and overall survival (OS) in patients with metastatic melanoma undergoing ipilimumab monotherapy. A cohort of 148 patients was examined, with plasma samples collected prior to treatment initiation and at the end of the first and second treatment cycles.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!