Maize peroxidase Px5 has a highly conserved sequence in inbreds resistant to mycotoxin producing fungi which enhances fungal and insect resistance.

J Plant Res

Crop Bioprotection Research Unit, USDA, Agricultural Research Service, National Center for Agricultural Utilization Research, 1815 University St., Peoria, IL, 61604, USA.

Published: January 2016

Mycotoxin presence in maize causes health and economic issues for humans and animals. Although many studies have investigated expression differences of genes putatively governing resistance to producing fungi, few have confirmed a resistance role, or examined putative resistance gene structure in more than a couple of inbreds. The pericarp expression of maize Px5 has previously been associated with resistance to Aspergillus flavus growth and insects in a set of inbreds. Genes from 14 different inbreds that included ones with resistance and susceptibility to A. flavus, Fusarium proliferatum, F. verticillioides and F. graminearum and/or mycotoxin production were cloned using high fidelity enzymes, and sequenced. The sequence of Px5 from all resistant inbreds was identical, except for a single base change in two inbreds, only one of which affected the amino acid sequence. Conversely, the Px5 sequence from several susceptible inbreds had several base variations, some of which affected amino acid sequence that would potentially alter secondary structure, and thus enzyme function. The sequence of the maize peroxidase Px5 common to inbreds resistant to mycotoxigenic fungi was overexpressed in maize callus. Callus transformants overexpressing the gene caused significant reductions in growth for fall armyworms, corn earworms, and F. graminearum compared to transformant callus with a β-glucuronidase gene. This study demonstrates rarer transcripts of potential resistance genes overlooked by expression screens can be identified by sequence comparisons. A role in pest resistance can be verified by callus expression of the candidate genes, which can thereby justify larger scale transformation and regeneration of transgenic plants expressing the resistance gene for further evaluation.

Download full-text PDF

Source
http://dx.doi.org/10.1007/s10265-015-0770-3DOI Listing

Publication Analysis

Top Keywords

resistance
9
maize peroxidase
8
peroxidase px5
8
inbreds
8
inbreds resistant
8
producing fungi
8
resistance gene
8
amino acid
8
acid sequence
8
sequence
7

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!