AI Article Synopsis

  • The evolution of lignocellulose decomposition is a key development in fungi, with white-rot fungi being the most proficient at breaking down cellulose and lignin in woody plants.
  • Recent genomic studies include new sequences from ten fungi, providing insights into the evolutionary origins of the enzymes responsible for lignocellulose decomposition.
  • Findings indicate that white-rot fungi likely evolved later in Agaricomycetes than previously thought, with the first class II peroxidases emerging in the ancestor of the Auriculariales, while early clades lack these enzymes, relying on older methods for decomposing plant cell walls.

Article Abstract

Evolution of lignocellulose decomposition was one of the most ecologically important innovations in fungi. White-rot fungi in the Agaricomycetes (mushrooms and relatives) are the most effective microorganisms in degrading both cellulose and lignin components of woody plant cell walls (PCW). However, the precise evolutionary origins of lignocellulose decomposition are poorly understood, largely because certain early-diverging clades of Agaricomycetes and its sister group, the Dacrymycetes, have yet to be sampled, or have been undersampled, in comparative genomic studies. Here, we present new genome sequences of ten saprotrophic fungi, including members of the Dacrymycetes and early-diverging clades of Agaricomycetes (Cantharellales, Sebacinales, Auriculariales, and Trechisporales), which we use to refine the origins and evolutionary history of the enzymatic toolkit of lignocellulose decomposition. We reconstructed the origin of ligninolytic enzymes, focusing on class II peroxidases (AA2), as well as enzymes that attack crystalline cellulose. Despite previous reports of white rot appearing as early as the Dacrymycetes, our results suggest that white-rot fungi evolved later in the Agaricomycetes, with the first class II peroxidases reconstructed in the ancestor of the Auriculariales and residual Agaricomycetes. The exemplars of the most ancient clades of Agaricomycetes that we sampled all lack class II peroxidases, and are thus concluded to use a combination of plesiomorphic and derived PCW degrading enzymes that predate the evolution of white rot.

Download full-text PDF

Source
http://dx.doi.org/10.1093/molbev/msv337DOI Listing

Publication Analysis

Top Keywords

lignocellulose decomposition
12
clades agaricomycetes
12
class peroxidases
12
origins lignocellulose
8
white-rot fungi
8
early-diverging clades
8
white rot
8
agaricomycetes
6
fungi
5
comparative genomics
4

Similar Publications

This study focuses on the extraction of phenolic compounds from the fermentation of and . The main goal was to synthesize phenol/chitosan microspheres and PVA films and characterized using FTIR, TGA, DSC, SEM, and mechanical tests to evaluate their physical, chemical, and mechanical properties for antimicrobial packaging applications. Homogeneous chitosan microspheres loaded with lignin-derived phenols were obtained, showing controlled release of antimicrobial compounds.

View Article and Find Full Text PDF

Owing to the massive refractory lignocellulose and leachate-organic loads, the stabilization of municipal solid waste (MSW) landfill is often prolonged, resulting in environmental burdens. Herein, various assembled multifunctional microbial inoculums (MMIs) were introduced into the semi-aerobic bioreactor landfill (SABL) to investigate the bioaugmentation impacts. Compared to control (CK) and other MMIs treatments (G1-G3), LD + LT + DM inoculation (G4) significantly increased volatile solids degradation (9.

View Article and Find Full Text PDF

New insight into enhanced permanganate oxidation by lignocellulose-derived biochar: The overlooked role of persistent free radicals.

Water Res

December 2024

The Ministry of Education Key Laboratory of Northwest Water Resource, Environment and Ecology, Xi'an University of Architecture and Technology, Xi'an, 710055, PR China; Shaanxi Key Laboratory of Environmental Engineering, Xi'an University of Architecture and Technology, Xi'an, 710055, PR China. Electronic address:

Permanganate (Mn(VII)) is a traditional reagent used for water purification, but it is mild to deal with refractory organic contaminants of emerging concern. There is great interest in combination with effective and low-cost biochar to improve reaction kinetics of Mn(VII). Until recently, it still unclear how biomass composition and carbon structure of biochar influence the Mn(VII) oxidation performance.

View Article and Find Full Text PDF

The co-production of xylose, fermentable glucose and β-O-4 linkage-rich lignin through efficiently dismantling sugarcane bagasse.

Int J Biol Macromol

December 2024

Guangxi Key Laboratory of Clean Pulp & Papermaking and Pollution Control, College of Light Industry and Food Engineering, Guangxi University, Nanning 530004, China. Electronic address:

As an "upstream" process in biorefinery, biomass dismantling can dismantle the natural stable structure of lignocellulosic biomass and separate its three major components. To increase the value of the entire biomass by fully utilizing the three main components (cellulose, lignin, and hemicellulose), this study proposes a two-step decomposition system combining formic acid (FA) pretreatment and ethylene glycol-NaOH (EGA) dismantling, aiming to effectively convert sugarcane bagasse into xylose, fermentable glucose, and high-value lignin. In the first step, FA pretreatment removed 79.

View Article and Find Full Text PDF

Soil microbial carbon and nitrogen limitation constraints soil organic carbon stability in arid and semi-arid grasslands.

J Environ Manage

December 2024

Breeding Base for State Key Laboratory of Land Degradation and Ecological Restoration in Northwest China, Ningxia University, Yinchuan, 750021, China; Ministry of Education Key Laboratory for Restoration and Reconstruction of Degraded Ecosystem in Northwest China, Ningxia University, Yinchuan, 750021, China. Electronic address:

Microorganisms play dual roles in soil organic carbon (SOC) decomposition and accumulation. Despite advancing insights into their involvement in the carbon cycle, understanding the impact of microbial community structure and physiological traits on SOC stabilization in arid and semi-arid grasslands remains elusive. Here, we analyzed arid and semi-arid grasslands SOC stability by comparing the ratio of mineral-associated organic carbon (MAOC) to particulate organic carbon (POC) across a grassland transect in north-south Ningxia, encompassing various grassland types and a broad climatic gradient (ΔMAP = 450 mm).

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!