Background: Multiple sclerosis (MS) is an autoimmune disease of the central nervous system (CNS) characterized by inflammation, demyelination and axonal pathology. Myelin basic protein/proteolipid protein (MBP-PLP) fusion protein MP4 is capable of inducing chronic experimental autoimmune encephalomyelitis (EAE) in susceptible mouse strains mirroring diverse histopathological and immunological hallmarks of MS. Lack of human tissue underscores the importance of animal models to study the pathology of MS.

Methods: Twenty-two female C57BL/6 (B6) mice were immunized with MP4 and the clinical development of experimental autoimmune encephalomyelitis (EAE) was observed. Methylene blue-stained semi-thin and ultra-thin sections of the lumbar spinal cord were assessed at the peak of acute EAE, three months (chronic EAE) and six months after onset of EAE (long-term EAE). The extent of lesional area and inflammation were analyzed in semi-thin sections on a light microscopic level. The magnitude of demyelination and axonal damage were determined using electron microscopy. Emphasis was put on the ventrolateral tract (VLT) of the spinal cord.

Results: B6 mice demonstrated increasing demyelination and severe axonal pathology in the course of MP4-induced EAE. Additionally, mitochondrial swelling and a decrease in the nearest neighbor neurofilament distance (NNND) as early signs of axonal damage were evident with the onset of EAE. In semi-thin sections we observed the maximum of lesional area in the chronic state of EAE while inflammation was found to a similar extent in acute and chronic EAE. In contrast to the well-established myelin oligodendrocyte glycoprotein (MOG) model, disease stages of MP4-induced EAE could not be distinguished by assessing the extent of parenchymal edema or the grade of inflammation.

Conclusions: Our results complement our previous ultrastructural studies of B6 EAE models and suggest that B6 mice immunized with different antigens constitute useful instruments to study the diverse histopathological aspects of MS.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC4676607PMC
http://journals.plos.org/plosone/article?id=10.1371/journal.pone.0144847PLOS

Publication Analysis

Top Keywords

demyelination axonal
12
axonal pathology
12
experimental autoimmune
12
autoimmune encephalomyelitis
12
eae
12
encephalomyelitis eae
8
diverse histopathological
8
mice immunized
8
chronic eae
8
onset eae
8

Similar Publications

The role of mitochondrial DNA variants and dysfunction in the pathogenesis and progression of multiple sclerosis.

Mitochondrion

December 2024

Network of Immunity in Infection, Malignancy and Autoimmunity (NIIMA), Universal Scientific Education and Research Network (USERN), Tehran, Iran; Research Center for Immunodeficiencies, Children's Medical Center, Tehran University of Medical Sciences, Tehran, Iran; Department of Immunology, School of Medicine, Tehran University of Medical Sciences, Tehran, Iran. Electronic address:

Multiple sclerosis (MS) is a chronic autoimmune disease that affects the central nervous system (CNS). The etiology of MS remains elusive, with a complex interplay of genetic and environmental factors contributing to its pathogenesis. Recent studies showed mitochondrial DNA (mtDNA) as a potential player in the development and progression of MS.

View Article and Find Full Text PDF

Background And Objectives: Magnetic resonance imaging (MRI) and neurohistopathology are important correlates for evaluation of disease progression in multiple sclerosis (MS). Here we used experimental autoimmune encephalomyelitis (EAE) as an animal model of MS to determine the correlation between clinical EAE severity, MRI and histopathological parameters.

Methods: N = 11 female C57BL/6J mice were immunized with human myelin oligodendrocyte glycoprotein 1-125, while N = 9 remained non-immunized.

View Article and Find Full Text PDF

Multiple sclerosis (MS) is a chronic, inflammatory demyelinating disorder of the central nervous system (CNS) targeting myelinated axons. Pathogenesis of MS entails an intricate genetic, environmental, and immunological interaction. Dysregulation of immune response i.

View Article and Find Full Text PDF

Guiding Oligodendrocyte Progenitor Cell Maturation Using Electrospun Fiber Cues in a 3D Hyaluronic Acid Hydrogel Culture System.

ACS Biomater Sci Eng

December 2024

Department of Chemical Engineering, University of Virginia, Charlottesville, Virginia 22903-1738 United States.

The current lack of therapeutic approaches to demyelinating disorders and injuries stems from a lack of knowledge surrounding the underlying mechanisms of myelination. This knowledge gap motivates the development of effective models to study the role of environmental cues in oligodendrocyte progenitor cell (OPC) maturation. Such models should focus on determining, which factors influence OPCs to proliferate and differentiate into mature myelinating oligodendrocytes (OLs).

View Article and Find Full Text PDF

Altered lipid profile and reduced neuronal support in human induced pluripotent stem cell-derived astrocytes from adrenoleukodystrophy patients.

J Inherit Metab Dis

January 2025

Department of Complex Trait Genetics, Centre for Neurogenomics and Cognitive Research, Amsterdam Neuroscience, Vrije Universiteit Amsterdam, Amsterdam, The Netherlands.

X-linked adrenoleukodystrophy (ALD) is a peroxisomal disorder resulting from pathogenic variants in the ABCD1 gene that primarily affects the nervous system and is characterized by progressive axonal degeneration in the spinal cord and peripheral nerves and leukodystrophy. Dysfunction of peroxisomal very long-chain fatty acid (VLCFA) degradation has been implicated in ALD pathology, but the impact on astrocytes, which critically support neuronal function, remains poorly understood. Fibroblasts from four ALD patients were reprogrammed to generate human-induced pluripotent stem cells (hiPSC).

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!