Effect of Selection for High Activity-Related Metabolism on Membrane Phospholipid Fatty Acid Composition in Bank Voles.

Physiol Biochem Zool

Institute of Environmental Sciences, Jagiellonian University, Gronostajowa 7, 30-387 Kraków, Poland; 2Department of Integrative Biology and Evolution, Research Institute of Wildlife Ecology, University of Veterinary Medicine, Savoyenstrasse 1, 1160 Vienna, Austria.

Published: September 2016

Endothermy, high basal metabolic rates (BMRs), and high locomotor-related metabolism were important steps in the evolution of mammals. It has been proposed that the composition of membrane phospholipid fatty acids plays an important role in energy metabolism and exercise muscle physiology. In particular, the membrane pacemaker theory of metabolism suggests that an increase in cell membrane fatty acid unsaturation would result in an increase in BMR. We aimed to determine whether membrane phospholipid fatty acid composition of heart, liver, and gastrocnemius muscles differed between lines of bank voles selected for high swim-induced aerobic metabolism-which also evolved an increased BMR-and unselected control lines. Proportions of fatty acids significantly differed among the organs: liver was the least unsaturated, whereas the gastrocnemius muscles were most unsaturated. However, fatty acid proportions of the heart and liver did not differ significantly between selected and control lines. In gastrocnemius muscles, significant differences between selection directions were found: compared to control lines, membranes of selected voles were richer in saturated C18:0 and unsaturated C18:2n-6 and C18:3n-3, whereas the pattern was reversed for saturated C16:0 and unsaturated C20:4n-6. Neither unsaturation index nor other combined indexes of fatty acid proportions differed between lines. Thus, our results do not support the membrane pacemaker hypothesis. However, the differences between selected and control lines in gastrocnemius muscles reflect chain lengths rather than number of double bonds and are probably related to differences in locomotor activity per se rather than to differences in the basal or routine metabolic rate.

Download full-text PDF

Source
http://dx.doi.org/10.1086/683039DOI Listing

Publication Analysis

Top Keywords

fatty acid
20
gastrocnemius muscles
16
control lines
16
membrane phospholipid
12
phospholipid fatty
12
acid composition
8
bank voles
8
fatty acids
8
membrane pacemaker
8
heart liver
8

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!