Heat shock protein 70-1A is a novel angiogenic regulator.

Biochem Biophys Res Commun

Scripps Korea Antibody Institute, Hyoja-2-dong, Chuncheon-si, Gangwon-do, 200-701, South Korea. Electronic address:

Published: January 2016

Heat shock protein 70-1A (HSP70-1A) is a stress-inducible protein that provides an essential intracellular molecular chaperone function; however, the mechanism of HSP70-1A in angiogenesis has not been clarified. Herein, HSP70-1A gene silencing implicated this protein in angiogenesis. Additionally, recombinant human HSP70-1A (rhHSP70-1A) was able to stimulate human umbilical vein endothelial cell (HUVEC) migration and tube formation in vitro and microvessel formation in vivo similarly to recombinant human vascular endothelial growth factor (rhVEGF). Furthermore, rhHSP70-1A was tightly bound to the surface of HUVECs and participated in extracellular signal-related kinase (ERK)-dependent angiogenesis. Together, these results implicate HSP70-1A as a novel angiogenic regulator.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.bbrc.2015.11.125DOI Listing

Publication Analysis

Top Keywords

heat shock
8
shock protein
8
protein 70-1a
8
novel angiogenic
8
angiogenic regulator
8
recombinant human
8
hsp70-1a
5
protein
4
70-1a novel
4
regulator heat
4

Similar Publications

Protective Effect of Rosmarinic Acid on Endotoxin-Induced Neuronal Damage Through Modulating GRP78/PERK/MANF Pathway.

Drug Des Devel Ther

January 2025

Department of Pharmacology, West China School of Basic Medical Sciences & Forensic Medicine, Sichuan University, Chengdu, Sichuan, 610041, People's Republic of China.

Objective: Neuronal damage is criminal to cognitive dysfunction, closely related to endoplasmic reticulum stress (ERS). However, due to the pathogenesis of endotoxin-induced long-term cognitive dysfunction is not fully clarified, there is still a lack of effective treatment. This study was conducted to explore the protective effects and mechanism of rosmarinic acid (RA) against ERS in endotoxin-induced cognitive dysfunction in mice and neuronal injury in cells.

View Article and Find Full Text PDF

Evaluating the effects of sodium metabisulfite on the cognitive and motor function in .

Narra J

December 2024

Biological Models Laboratory, Department of Biochemistry and Molecular Biology, College of Medicine, University of the Philippines Manila, Manila, Philippines.

Sodium metabisulfite is widely used as a preservative in many food and beverage products, yet its potential effects on cognitive and motor functions at low concentrations remain poorly understood. Evaluating learning, short-term memory, and motor activity is essential, as these functions are critical indicators of neurological health and could be impacted by low-level exposure to sodium metabisulfite. The aim of this study was to investigate the effects of sublethal concentrations of sodium metabisulfite on cognitive and motor functions using (fruit flies) as the model organism.

View Article and Find Full Text PDF

Lead azide (LA) is a widely utilized primary explosive, serving as the initiating charge in blasting caps or detonators to start the detonation process of secondary explosives. The toxicity and environmental concerns associated with LA have led to regulatory restrictions and increased scrutiny, prompting the search for lead-free alternatives. LA is highly sensitive toward heat, shock, or friction, which poses safety challenges during manufacturing, handling, and storage.

View Article and Find Full Text PDF

N6-methyladenosine modification of host Hsc70 attenuates nucleopolyhedrovirus infection in the lepidopteran model insect Bombyx mori.

Int J Biol Macromol

January 2025

Integrative Science Center of Germplasm Creation in Western China (CHONGQING) Science City & Southwest University, Biological Science Research Center, Southwest University, Chongqing, China; Key Laboratory for Germplasm Creation in Upper Reaches of the Yangtze River, Ministry of Agriculture and Rural Affairs, Chongqing, China. Electronic address:

N6-methyladenosine (m6A) is the most prevalent internal modification on mRNA and plays critical roles in various biological processes including virus infection. It has been shown that m6A methylation is able to regulate virus proliferation and host innate immunity in mammals and plants, however, this antiviral defense in insects is largely unknown. Here we investigated function of m6A and its associated methyltransferases in nucleopolyhedrovirus (BmNPV) infection in silkworm.

View Article and Find Full Text PDF

INTERACTION OF SMALL HEAT SHOCK PROTEINS WITH BAG3.

Biochimie

January 2025

Department of Biochemistry, School of Biology, M.V. Lomonosov Moscow State University; Department of Biochemistry and Regenerative Biomedicine Faculty of Basic Medicine, M.V. Lomonosov Moscow State University. Electronic address:

BAG3 is a universal adapter protein involved in various cellular processes, including the regulation of apoptosis, chaperone-assisted selective autophagy, and heat shock protein function. The interaction between small heat shock proteins (sHsps) and their α-crystallin domains (Acds) with full-length BAG3 protein and its IPV domain was analyzed using size-exclusion chromatography, native gel electrophoresis, and chemical cross-linking. HspB7 and the 3D mutant of HspB1 (which mimics phosphorylation) showed no interaction, HspB6 weakly interacted, and HspB8 strongly interacted with full-length BAG3.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!