Background: HCV replication in persistently infected cell culture remains resistant to IFN-α/RBV combination treatment, whereas IFN-λ1 induces viral clearance. The antiviral mechanisms by which IFN-λ1 induces sustained HCV clearance have not been determined.
Aim: To investigate the mechanisms by which IFN-λ clears HCV replication in an HCV cell culture model.
Methods: IFN-α sensitive (S3-GFP) and resistant (R4-GFP) cells were treated with equivalent concentrations of either IFN-α or IFN-λ. The relative antiviral effects of IFN-α and IFN-λ1 were compared by measuring the HCV replication, quantification of HCV-GFP expression by flow cytometry, and viral RNA levels by real time RT-PCR. Activation of Jak-Stat signaling, interferon stimulated gene (ISG) expression, and miRNA-122 transcription in S3-GFP and R4-GFP cells were examined.
Results: We have shown that IFN-λ1 induces HCV clearance in IFN-α resistant and sensitive replicon cell lines in a dose dependent manner through Jak-Stat signaling, and induces STAT 1 and STAT 2 activation, ISRE-luciferase promoter activation and ISG expression. Stat 3 activation is also involved in IFN-λ1 induced antiviral activity in HCV cell culture. IFN-λ1 induced Stat 3 phosphorylation reduces the expression of hepatocyte nuclear factor 4 alpha (HNF4α) through miR-24 in R4-GFP cells. Reduced expression of HNF4α is associated with decreased expression of miR-122 resulting in an anti-HCV effect. Northern blot analysis confirms that IFN-λ1 reduces miR-122 levels in R4-GFP cells. Our results indicate that IFN-λ1 activates the Stat 3-HNF4α feedback inflammatory loop to inhibit miR-122 transcription in HCV cell culture.
Conclusions: In addition to the classical Jak-Stat antiviral signaling pathway, IFN-λ1 inhibits HCV replication through the suppression of miRNA-122 transcription via an inflammatory Stat 3-HNF4α feedback loop. Inflammatory feedback circuits activated by IFNs during chronic inflammation expose non-responders to the risk of hepatocellular carcinoma.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC4686105 | PMC |
http://journals.plos.org/plosone/article?id=10.1371/journal.pone.0141655 | PLOS |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!