Atomically thin tungsten disulfide (WS2) has attracted much attention in recent years due its indirect-to-direct band gap transition, band gap tunability, and giant spin splitting. However, the fabrication of atomically thin WS2 remains largely underdeveloped in comparison to its structural analogue MoS2. Here we report the direct fabrication of highly crystalline few-layer WS2 on silver substrates by pulse laser deposition at the relatively low temperature of 450 °C. The growth takes places by conventional epitaxy, through the in-situ formation of nearly lattice-matching Ag2S on the silver surface. Intriguingly, it was observed that the resulting film was composed of not only the usual semiconducting 2H-WS2 structure but also the less common metallic 1T-WS2. Modifications of the synthesis parameters allow for control over the crystalline quality, film thickness and crystal phase composition of the resulting WS2 film.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC4676019 | PMC |
http://dx.doi.org/10.1038/srep18116 | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!