Amyotrophic lateral sclerosis (ALS) is a neural disorder that causes death of the motor neurons in the brain and spinal cord; this affects the voluntary muscles and gradually leads to paralysis of the whole body. Most ALS cases are sporadic, though about 5-10% are familial. ALS is caused by multiple factors including mutation in any one of a number of specific genes, one of the most frequently affected is superoxide dismutase (SOD) 1. Alterations in SOD 1 have been linked with several variants of familial ALS. SOD 1 is a powerful antioxidant enzyme that protects cells from the damaging effects of superoxide radicals. The enzyme binds both copper and zinc ions that are directly involved in the deactivation of toxic superoxide radicals. Mutated SOD1 gene can acquire both gain and loss of function mutations. The most commonly identified mutations in SOD1 that affect protein activity are D90A, A4V and G93A. Deleterious mutations have been shown to modify SOD1 activity, which leads to the accumulation of highly toxic hydroxyl radicals. Accumulation of these free radicals causes degradation of both nuclear and mitochondrial DNA and protein misfolding, features which can be used as pathological indicators associated with ALS. Numerous clinical trials have been carried out over last few years with limited success. In some patients advanced techniques like gene and stem cell therapy have been trialed. However no definitive treatment option can provide a cure and currently ALS is managed by drugs and other supportive therapies. Consequently there is a need to identify new approaches for treatment of this ultimately fatal disease.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1016/j.gene.2015.11.049 | DOI Listing |
Nutrients
December 2024
Department of Molecular Biology and Genetics, Çanakkale Onsekiz Mart University, Çanakkale 17100, Turkey.
The brain contains many interconnected and complex cellular and molecular mechanisms. Injury to the brain causes permanent dysfunctions in these mechanisms. So, it continues to be an area where surgical intervention cannot be performed except for the removal of tumors and the repair of some aneurysms.
View Article and Find Full Text PDFInt J Mol Sci
December 2024
Laboratory for Pathology Dynamics, Department of Biomedical Engineering, Georgia Institute of Technology & Emory University School of Medicine, Atlanta, GA 30322, USA.
The overlapping molecular pathophysiology of Alzheimer's Disease (AD), Amyotrophic Lateral Sclerosis (ALS), and Frontotemporal Dementia (FTD) was analyzed using relationships from a knowledge graph of 33+ million biomedical journal articles. The unsupervised learning rank aggregation algorithm from SemNet 2.0 compared the most important amino acid, peptide, and protein (AAPP) nodes connected to AD, ALS, or FTD.
View Article and Find Full Text PDFInt J Mol Sci
December 2024
MOE Key Lab of Rare Pediatric Diseases & Hunan Key Laboratory of Medical Genetics of the School of Life Sciences, Central South University, Changsha 410017, China.
The pathogenesis of neurodegenerative diseases results from the interplay between genetic and environmental factors. Aging and chronic oxidative stress are critical contributors to neurodegeneration. UBQLN2, a ubiquitin-related protein, aids in protein degradation and protects against oxidative stress.
View Article and Find Full Text PDFInt J Mol Sci
December 2024
Daxing Research Institute, University of Science and Technology Beijing, Beijing 100083, China.
There is increasing interest in the potential therapeutic role of 5-HT (serotonin) in the treatment of neurodegenerative diseases, which are characterized by the progressive degeneration and death of nerve cells. 5-HT is a vital neurotransmitter that plays a central role in regulating mood, cognition, and various physiological processes in the body. Disruptions in the 5-HT system have been linked to several neurological and psychiatric disorders, making it an attractive target for therapeutic intervention.
View Article and Find Full Text PDFInt J Mol Sci
December 2024
Department of Biology, University of Toronto Mississauga, Mississauga, ON L5L 1C6, Canada.
The predominant neurodegenerative diseases, Alzheimer's disease, Parkinson's disease, dementia with Lewy Bodies, Huntington's disease, amyotrophic lateral sclerosis, and frontotemporal dementia, are rarely pure diseases but, instead, show a diversity of mixed pathologies. At some level, all of them share a combination of one or more different toxic biomarker proteins: amyloid beta (Aβ), phosphorylated Tau (pTau), alpha-synuclein (αSyn), mutant huntingtin (mHtt), fused in sarcoma, superoxide dismutase 1, and TAR DNA-binding protein 43. These toxic proteins share some common attributes, making them potentially universal and simultaneous targets for therapeutic intervention.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!