An improved MR sequence for attenuation correction in PET/MR hybrid imaging.

Magn Reson Imaging

Department of Clinical Radiology, Graduate School of Medical Sciences, Kyushu University, Fukuoka, Japan.

Published: April 2016

The aim of this study was to investigate the effects of MR parameters on tissue segmentation and determine the optimal MR sequence for attenuation correction in PET/MR hybrid imaging. Eight healthy volunteers were examined using a PET/MR hybrid scanner with six three-dimensional turbo-field-echo sequences for attenuation correction by modifying the echo time, k-space trajectory in the phase-encoding direction, and image contrast. MR images for attenuation correction were obtained from six MR sequences in each session; each volunteer underwent four sessions. Two radiologists assessed the attenuation correction maps generated from the MR images with respect to segmentation errors and ghost artifacts on a five-point scale, and the scores were decided by consensus. Segmentation accuracy and reproducibility were compared. Multiple regression analysis was performed to determine the effects of each MR parameter. The two three-dimensional turbo-field-echo sequences with an in-phase echo time and radial k-space sampling showed the highest total scores for segmentation accuracy, with a high reproducibility. In multiple regression analysis, the score with the shortest echo time (-3.44, P<0.0001) and Cartesian sampling in the anterior/posterior phase-encoding direction (-2.72, P=0.002) was significantly lower than that with in-phase echo time and Cartesian sampling in the right/left phase-encoding direction. Radial k-space sampling provided a significantly higher score (+5.08, P<0.0001) compared with Cartesian sampling. Furthermore, radial sampling improved intrasubject variations in the segmentation score (-8.28%, P=0.002). Image contrast had no significant effect on the total score or reproducibility. These results suggest that three-dimensional turbo-field-echo MR sequences with an in-phase echo time and radial k-space sampling provide improved MR-based attenuation correction maps.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.mri.2015.10.037DOI Listing

Publication Analysis

Top Keywords

attenuation correction
20
pet/mr hybrid
12
echo time
12
sequence attenuation
8
correction pet/mr
8
hybrid imaging
8
three-dimensional turbo-field-echo
8
turbo-field-echo sequences
8
segmentation accuracy
8
multiple regression
8

Similar Publications

Coherent heterodyne lidars are typically used for windspeed and attenuated backscattering measurements. The lack of molecular backscattering detection capability has limited the calibrated backscattering measurements until recent advances in coherent lidar technology. In this work, the simultaneous detection of aerosol and molecular backscattering is demonstrated with coherent heterodyne lidar, and the results are compared with a state-of-the-art Raman lidar PollyXT as a reference in a long-range for the first time.

View Article and Find Full Text PDF

The breakthroughs in communication distance and data rate have been eagerly anticipated by scientists in the area of underwater wireless optical communication (UWOC), which is seriously limited by the obvious aquatic attenuation in underwater channels. The high-power laser source and ultra-sensitive photodetector are straightforward in extending the UWOC distance. However, nonlinear impairments caused by bandwidth-limited high-power transmitters and sensitive receivers severely degrade the data rate of long-distance UWOC.

View Article and Find Full Text PDF

A compact and easy-to-use high-bandwidth autobalanced detector for microscopy is presented, being able to remove up to 67 dB of correlated noise, thus, allowing for shot-noise limited image acquisition even in the presence of high laser excess noise. Detecting a 20 MHz modulation frequency at half the repetition rate of the driving pulsed laser, the autobalanced detector is able to exploit an extra +3 dB increase in signal-to-noise ratio due to the coherent addition of modulation sidebands in stimulated Raman scattering. Pixel-by-pixel noise canceling and correction of sample transmission losses are possible for pixel scan rates of more than 1.

View Article and Find Full Text PDF

This study uses the Quantum ESPRESSO code to introduce Hubbard correction (U) to the density functional theory (DFT) in order to examine the effects of non-metals (C, F, N, and S) doping on the structural, electronic, and optical characteristics of rutile TiO. Rutile TiO is a substance that shows promise for use in renewable energy production, including fuels and solar energy, as well as environmental cleanup. Its wide bandgap, however, restricts their uses to areas with UV light.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!