Molecular characterization of novel splice site mutation causing protein C deficiency.

Blood Coagul Fibrinolysis

aSaudi Diagnostics Laboratory (SDL), Genetics Department, King Faisal Specialist Hospital and Research Centre bPediatric Hematology Division, Pediatrics Department, Prince Sultan Military Medical City, Riyadh, Saudi Arabia.

Published: July 2016

Congenital protein C deficiency is an inherited coagulation disorder associated with an elevated risk of venous thromboembolism. A Saudi Arabian male from a consanguineous family was admitted to neonatal intensive care unit in his first days of life because of transient tachypnea and hematuria. Laboratory investigations determined low platelet and protein C deficiency. Direct sequencing of PROC gene and RNA analysis were performed. Analysis of factor V Leiden (G1691A) and factor II (G20210A) mutations was also done. Novel homozygous splice site mutation c.796+3A>T was detected in the index case and segregation was confirmed in the family. RNA analysis revealed the pathogenicity of the mutation by skipping exon 8 of PROC gene and changing the donor splice site of the exon. Detection of the molecular cause of protein C deficiency reduces life threatening and facilitates inductive carrier testing, prenatal and preimplantation genetic diagnosis for families.

Download full-text PDF

Source
http://dx.doi.org/10.1097/MBC.0000000000000490DOI Listing

Publication Analysis

Top Keywords

protein deficiency
16
splice site
12
site mutation
8
proc gene
8
rna analysis
8
molecular characterization
4
characterization novel
4
novel splice
4
mutation causing
4
protein
4

Similar Publications

Pathogenic variants in HMGCR were recently linked to a limb-girdle muscular dystrophy (LGMD) phenotype. The protein product HMG CoA reductase (HMGCR) catalyzes a key component of the cholesterol synthesis pathway. The two other muscle diseases associated with HMGCR, statin-associated myopathy (SAM) and autoimmune anti-HMGCR myopathy, are not inherited in a Mendelian pattern.

View Article and Find Full Text PDF

Design and validation of cell-based potency assays for frataxin supplementation treatments.

Mol Ther Methods Clin Dev

December 2024

Department of Neurology, O'Donnell Brain Institute, University of Texas Southwestern Medical Center, 6000 Harry Hines Boulevard, Dallas, TX 75390, USA.

Friedreich's ataxia (FRDA) is a multisystem, autosomal recessive disorder caused by mutations in the frataxin () gene. As FRDA is considered an FXN deficiency disorder, numerous therapeutic approaches in development or clinical trials aim to supplement FXN or restore endogenous expression. These include gene therapy, protein supplementation, genome editing or upregulation of transcription.

View Article and Find Full Text PDF

FAM136A deficiency has been associated with Ménière's disease. However, the underlying mechanism of action of this protein remains unclear. We hypothesized that FAM136A functions in maintaining mitochondria, even in HepG2 cells.

View Article and Find Full Text PDF

Physio-biochemical and molecular mechanisms of low nitrogen stress tolerance in peanut (Arachis hypogaea L.).

Plant Mol Biol

January 2025

Henan Key Laboratory for Molecular Ecology and Germplasm Innovation of Cotton and Wheat and Xinxiang Key Laboratory of Crop Root Biology and Green Efficient Production, School of Life Sciences, Henan Collaborative Innovation Center of Modern Biological Breeding, Henan Institute of Science and Technology, Xinxiang, 453003, Henan, China.

Nitrogen (N) is a major plant nutrient and its deficiency can arrest plant growth. However, how low-N stress impair plant growth and its related tolerance mechanisms in peanut seedlings has not yet been explored. To counteract this issue, a hydroponic study was conducted to explore low N stress (0.

View Article and Find Full Text PDF

Male sex determination maintains proteostasis and extends lifespan of daf-18/PTEN deficient C. elegans.

EMBO Rep

January 2025

The Zhongzhou Laboratory for Integrative Biology, Henan University, 450000, Zhengzhou, Henan, China.

Although females typically have a survival advantage, those with PTEN functional abnormalities face a higher risk of developing tumors than males. However, the differences in how each sex responds to PTEN dysfunction have rarely been studied. We use Caenorhabditis elegans to investigate how male and hermaphrodite worms respond to dysfunction of the PTEN homolog daf-18.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!